Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.
Докажите, что все восемь отрезков равны.

Вниз   Решение


На доску последовательно выписываются числа  a1 = 1,  a2, a3, ... по следующим правилам: an+1 = an – 2,  если число  an – 2  – натуральное и еще не выписано на доску, в противном случае  an+1 = an + 3.  Докажите, что все квадраты натуральных чисел появятся в этой последовательности при прибавлении 3 к предыдущему числу.

ВверхВниз   Решение


На основании AD трапеции ABCD взята точка  E так, что  AE = BC.  Отрезки CA и CE пересекают диагональ BD в точках O и P соответственно.
Докажите, что если  BO = PD,  то  AD² = BC² + AD·BC.

ВверхВниз   Решение


Две окружности с центрами O1 и O2 пересекаются в точках A и B. Биссектриса угла O1AO2 повторно пересекает окружности в точках C и D.
Докажите, что центр O описанной окружности треугольника CBD равноудалён от точек O1 и O2.

ВверхВниз   Решение


Назовём натуральные числа похожими, если они записываются с помощью одного и того же набора цифр (например, для набора цифр 1, 1, 2 похожими будут числа 112, 121, 211). Докажите, что существуют такие три похожих 1995-значных числа, в записи которых нет нулей, что сумма двух из них равна третьему.

ВверхВниз   Решение


Сколько представлений допускает дробь    в виде суммы двух положительных дробей со знаменателями n и  n + 1?

ВверхВниз   Решение


Пусть x1, x2 – корни уравнения  x² + px + q = 0.  Выразите через p и q следующие выражения:
а)     б)     в)     г)  

ВверхВниз   Решение




Центры O1 , O2 и O3 трех непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек O1 , O2 и O3 проведены касательные к данным окружностям так, как показано на рисунке. Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих отрезков.

ВверхВниз   Решение


Среди 11 внешне одинаковых монет 10 настоящих, весящих по 20 г, и одна фальшивая, весящая 21 г. Имеются чашечные весы, которые оказываются в равновесии, если груз на правой их чашке ровно вдвое тяжелее, чем на левой. (Если груз на правой чашке меньше, чем удвоенный груз на левой, то перевешивает левая чашка, если больше, то правая.) Как за три взвешивания на этих весах найти фальшивую монету?

ВверхВниз   Решение


Различные числа a, b и c таковы, что уравнения  x² + ax + 1 = 0  и  x² + bx + c = 0  имеют общий действительный корень. Кроме того, общий действительный корень имеют уравнения  x² + x + a = 0  и  x² + cx + b = 0.  Найдите сумму  a + b + c.

ВверхВниз   Решение


Доказать, что n-е простое число больше 3n при  n > 12.

ВверхВниз   Решение


Нарисован угол, и ещё имеется только циркуль.
  а) Какое наименьшее число окружностей надо провести, чтобы наверняка определить, является ли данный угол острым?
  б) Как определить, равен ли данный угол 31° (разрешается проводить сколько угодно окружностей)?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 116406  (#1)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 8,9

В шести корзинах лежат груши, сливы и яблоки. Число слив в каждой корзине равно числу яблок в остальных корзинах вместе взятых, а число яблок в каждой корзине равно числу груш в остальных корзинах вместе взятых. Докажите, что общее число фруктов делится на 31.

Прислать комментарий     Решение

Задача 116407  (#2)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Поворот помогает решить задачу ]
Сложность: 3
Классы: 8,9

Малыш и Карлсон режут квадратный торт. Карлсон выбирает на нём точку (не на границе). После этого Малыш делает прямолинейный разрез от выбранной точки до края (в любом направлении). Затем Карлсон проводит второй прямолинейный разрез от выбранной точки до края, перпендикулярный первому, и отдаёт меньший из получившихся двух кусков Малышу. Малыш хочет получить хотя бы четверть торта. Может ли Карлсон ему помешать?

Прислать комментарий     Решение

Задача 116408  (#3)

Темы:   [ Связь величины угла с длиной дуги и хорды ]
[ Построения одним циркулем ]
Сложность: 3
Классы: 8,9

Нарисован угол, и ещё имеется только циркуль.
  а) Какое наименьшее число окружностей надо провести, чтобы наверняка определить, является ли данный угол острым?
  б) Как определить, равен ли данный угол 31° (разрешается проводить сколько угодно окружностей)?

Прислать комментарий     Решение

Задача 116409  (#4)

Темы:   [ Четность и нечетность ]
[ Теория графов (прочее) ]
[ Процессы и операции ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Среди участников олимпиады каждый знаком не менее чем с тремя другими. Докажите, что можно выбрать группу из чётного числа участников (больше двух человек) и посадить их за круглый стол так, чтобы каждый был знаком с обоими соседями.

Прислать комментарий     Решение

Задача 116410  (#5)

Темы:   [ Процессы и операции ]
[ Формулы сокращенного умножения (прочее) ]
[ Задачи на максимум и минимум ]
Сложность: 3+
Классы: 8,9

На доске записано 101 число: 1², 2², ..., 101². За одну операцию разрешается стереть любые два числа, а вместо них записать модуль их разности.
Какое наименьшее число может получиться в результате 100 операций?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .