ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите геометрическом место ортоцентров (точек пересечения высот) всевозможных треугольников, вписанных в данную окружность. Существует ли такой многочлен P(x), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (P(x))n, n > 1, положительны? Известно, что вершины квадрата T принадлежат прямым, содержащим стороны квадрата P, а вписанная окружность квадрата T совпадает с описанной окружностью квадрата P. Найдите углы восьмиугольника, образованного вершинами квадрата P и точками касания окружности со сторонами квадрата T, и величины дуг, на которые вершины восьмиугольника делят окружность. В треугольнике две высоты не меньше сторон, на которые они опущены. Найдите углы треугольника. В параллелограмме ABCD, не являющемся ромбом, проведена биссектриса угла BAD. K и L – точки её пересечения с прямыми BC и CD соответственно. Докажите, что центр окружности, проведённой через точки C, K и L, лежит на окружности, проведённой через точки B, C и D. Внутри квадрата ABCD выбрана такая точка M, что ∠MAC = ∠MCD = α. Найдите величину угла ABM. Натуральные числа а, b, c и d таковы, что ab = cd. Может ли число a + b + c + d оказаться простым? |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 43]
Натуральные числа а, b, c и d таковы, что ab = cd. Может ли число a + b + c + d оказаться простым?
Взаимно перпендикулярные прямые l и m пересекаются в точке P окружности так, что они разбивают окружность на три дуги. Отметим на каждой дуге такую точку, что проведённая через неё касательная к окружности пересекается с прямыми l и m в точках равноотстоящих от точки касания. Докажите, что три отмеченные точки являются вершинами равностороннего треугольника.
В Простоквашинской начальной школе учится всего 20 детей. У каждых двух из них есть общий дед.
В ящиках лежат орехи. Известно, что в среднем в каждом ящике 10 орехов, а среднее арифметическое квадратов чисел орехов в ящиках меньше 1000. Докажите, что по крайней мере 10% ящиков не пустые.
Периоды двух последовательностей – 7 и 13. Какова максимальная длина начального куска, который может у них совпадать?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 43]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке