ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Кружки, факультативы, спецкурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60° (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в вершину C. В прямоугольном треугольнике медианы, проведённые из вершин острых углов, равны
На плоскости даны три точки A, B, C и три угла Найдите геометрическое место точек, равноудалённых от двух пересекающихся прямых. Имеются две концентрические окружности. Вокруг меньшей из них описан многоугольник, целиком находящийся внутри большей окружности. Из общего центра на стороны многоугольника опущены перпендикуляры, которые продолжены до пересечения с большей окружностью; каждая из полученных точек пересечения соединена с концами соответствующей стороны многоугольника. При каком условии построенный так звёздчатый многоугольник будет развёрткой пирамиды? Среди 4-х людей нет трех с одинаковым именем, одинаковым отчеством или одинаковой фамилией, но у любых двух людей совпадают либо имя, либо отчество, либо фамилия. Может ли так быть?
Одна из сторон треугольника равна 6, вторая сторона равна 2
Пусть O — центр окружности, описанной около треугольника ABC ,
Пловец плывёт вверх против течения Невы. Возле Дворцового моста он потерял пустую фляжку. Проплыв еще 20 минут против течения, он заметил потерю и вернулся догонять флягу; догнал он её возле моста лейтенанта Шмидта. Какова скорость течения Невы, если расстояние между мостами равно 2 км? CH – высота прямоугольного треугольника ABC , проведённая из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники ACH , BCH и ABC , равна CH . Имеется 81 гиря весом 12 г, 22 г, 32 г, ..., 812 г. Разложить их на 3 равные по весу кучи. Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья? |
Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 644]
Девять одинаковых конфет стоят 11 рублей с копейками, а тринадцать таких конфет стоят 15 рублей с копейками. Сколько стоит одна конфета?
Можно ли найти 57 различных двузначных чисел, чтобы сумма никаких двух из них не равнялась 100?
Игра со спичками. На столе лежит 37 спичек. Разрешается по очереди брать не более 5 спичек. Выигрывает тот, кто возьмет последнюю. Кто выигрывает при правильной игре?
а) Какое наибольшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно незакрашенное поле?
Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?
Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 644]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке