Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60° (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в вершину C.

Вниз   Решение


В прямоугольном треугольнике медианы, проведённые из вершин острых углов, равны   и  .  Найдите гипотенузу треугольника.

ВверхВниз   Решение


На плоскости даны три точки A, B, C и три угла $ \angle$D, $ \angle$E, $ \angle$F, меньшие 180o и в сумме равные 360o. Построить с помощью линейки и транспортира точку O плоскости такую, что $ \angle$AOB = $ \angle$D, $ \angle$BOC = $ \angle$E, $ \angle$COA = $ \angle$F (с помощью транспортира можно измерять и откладывать углы).

ВверхВниз   Решение


Найдите геометрическое место точек, равноудалённых от двух пересекающихся прямых.

ВверхВниз   Решение


Имеются две концентрические окружности. Вокруг меньшей из них описан многоугольник, целиком находящийся внутри большей окружности. Из общего центра на стороны многоугольника опущены перпендикуляры, которые продолжены до пересечения с большей окружностью; каждая из полученных точек пересечения соединена с концами соответствующей стороны многоугольника. При каком условии построенный так звёздчатый многоугольник будет развёрткой пирамиды?

ВверхВниз   Решение


Среди 4-х людей нет трех с одинаковым именем, одинаковым отчеством или одинаковой фамилией, но у любых двух людей совпадают либо имя, либо отчество, либо фамилия. Может ли так быть?

ВверхВниз   Решение


Одна из сторон треугольника равна 6, вторая сторона равна 2$ \sqrt{7}$, а противолежащий ей угол равен 60o. Найдите третью сторону треугольника.

ВверхВниз   Решение


Пусть O — центр окружности, описанной около треугольника ABC , AOC = 60o . Найдите угол AMC , где M — центр окружности, вписанной в треугольник ABC .

ВверхВниз   Решение


Пловец плывёт вверх против течения Невы. Возле Дворцового моста он потерял пустую фляжку. Проплыв еще 20 минут против течения, он заметил потерю и вернулся догонять флягу; догнал он её возле моста лейтенанта Шмидта. Какова скорость течения Невы, если расстояние между мостами равно 2 км?

ВверхВниз   Решение


CH – высота прямоугольного треугольника ABC , проведённая из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники ACH , BCH и ABC , равна CH .

ВверхВниз   Решение


Имеется 81 гиря весом 12 г, 22 г, 32 г, ..., 812 г. Разложить их на 3 равные по весу кучи.

ВверхВниз   Решение


Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?

Вверх   Решение

Задачи

Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 644]      



Задача 108733

Темы:   [ Текстовые задачи ]
[ Алгебраические неравенства и системы неравенств ]
Сложность: 3-
Классы: 7,8,9

Девять одинаковых конфет стоят 11 рублей с копейками, а тринадцать таких конфет стоят 15 рублей с копейками. Сколько стоит одна конфета?
Прислать комментарий     Решение


Задача 32787

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8

Можно ли найти 57 различных двузначных чисел, чтобы сумма никаких двух из них не равнялась 100?
Прислать комментарий     Решение


Задача 102818

Тема:   [ Симметричная стратегия ]
Сложность: 3
Классы: 7,8

Игра со спичками. На столе лежит 37 спичек. Разрешается по очереди брать не более 5 спичек. Выигрывает тот, кто возьмет последнюю. Кто выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 21979

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Таблицы и турниры (прочее) ]
[ Раскраски ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Оценка + пример ]
Сложность: 3
Классы: 7,8

а) Какое наибольшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно незакрашенное поле?
б) Какое наименьшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно чёрное поле?

Прислать комментарий     Решение

Задача 30285

Темы:   [ Четность и нечетность ]
[ Ломаные ]
Сложность: 3
Классы: 6,7

Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?

Прислать комментарий     Решение

Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .