Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Найдите  (xn – 1, xm – 1).

Вниз   Решение


Шестиугольник ABCDEF вписан в окружность радиуса R с центром O, причём  AB = CD = EF = R.  Докажите, что точки попарного пересечения описанных окружностей треугольников BOC, DOE и FOA, отличные от точки O, являются вершинами правильного треугольника со стороной R.

ВверхВниз   Решение


Докажите, что   .

ВверхВниз   Решение


На окружности S с диаметром AB взята точка C, из точки C опущен перпендикуляр CH на прямую AB. Докажите, что общая хорда окружности S и окружности S1 с центром C и радиусом CH делит отрезок CH пополам.

ВверхВниз   Решение


Даны диаметр AB окружности и точка C, не лежащая на прямой AB. С помощью одной линейки (без циркуля) опустите перпендикуляр из точки C на AB, если: а) точка C не лежит на окружности; б) точка C лежит на окружности.

ВверхВниз   Решение


Колоду из 52 карт разложили в виде прямоугольника 13×4. Известно, что если две карты лежат рядом по вертикали или горизонтали, то они одной масти либо одного достоинства. Докажите, что в каждом горизонтальном ряду (из 13 карт) все карты одной масти.

ВверхВниз   Решение


Докажите справедливость формулы  

ВверхВниз   Решение


Пусть P(x) и Q(x) – многочлены, причём Q(x) не равен нулю тождественно и P(x) не делится на Q(x). Докажите, что при некотором  s ≥ 1  существуют такие многочлены  A0(x), A1(x), ..., As(x)  и  R1(x), ..., Rs(x),  что  degQ(x) > degR1(x) > degR2(x) > ... > degRs(x) ≥ 0,
    P(x) = Q(x)A0(x) + R1(x),
    Q(x) = R1(x)A1(x) + R2(x),
    R1(x) = R2(x)A2(x) + R3(x),
      ...
    Rs–2(x) = Rs–1(x)As–1(x) + Rs(x),
    Rs–1(x) = Rs(x)As(x)
и  (P(x), Q(x)) = Rs(x).

ВверхВниз   Решение


Среднее арифметическое четырёх чисел равно 10. Если вычеркнуть одно из этих чисел, то среднее арифметическое оставшихся трёх увеличится на 1, если вместо этого вычеркнуть другое число, то среднее арифметическое оставшихся чисел увеличится на 2, а если вычеркнуть третье число, то среднее арифметическое оставшихся увеличится на 3. Как изменится среднее арифметическое трёх оставшихся чисел, если вычеркнуть четвёртое число?

ВверхВниз   Решение


а) На сторонах произвольного треугольника внешним образом построены правильные треугольники. Докажите, что их центры образуют правильный треугольник.
б) Докажите аналогичное утверждение для треугольников, построенных внутренним образом.
в) Докажите, что разность площадей правильных треугольников, полученных в задачах а) и б), равна площади исходного треугольника.

ВверхВниз   Решение


При каких значениях параметра a многочлен  P(x) = xn + axn–2  (n ≥ 2)  делится на  x – 2 ?

ВверхВниз   Решение


На сторонах произвольного выпуклого четырёхугольника внешним образом построены квадраты. Докажите, что отрезки, соединяющие центры противоположных квадратов, равны и перпендикулярны.

ВверхВниз   Решение


После хоккейного матча Антон сказал, что он забил 3 шайбы, а Илья только одну. Илья сказал, что он забил 4 шайбы, а Серёжа целых 5. Серёжа сказал, что он забил 6 шайб, а Антон всего лишь две. Могло ли оказаться так, что втроём они забили 10 шайб, если известно, что каждый из них один раз сказал правду, а другой раз солгал?

ВверхВниз   Решение


Пусть an – число решений уравнения  x1 + ... + xk = n   в целых неотрицательных числах и F(x) – производящая функция последовательности an.
  а) Докажите равенства:  F(x) = (1 + x + x² + ...)k = (1 – x)k.
  б) Найдите формулу для an, пользуясь задачей 61490.

ВверхВниз   Решение


Доказать, что
  а) из связного графа можно выкинуть несколько рёбер так, чтобы осталось дерево;
  б) в дереве с n вершинами ровно  n – 1  ребро;
  в) в дереве не меньше двух висячих вершин;
  г) в связном графа из n вершин не меньше  n – 1  ребра;
  д) если в связном графе n вершин и  n – 1  ребро, то он – дерево.

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 180]      



Задача 31095  (#27)

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Четность и нечетность ]
[ Деревья ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 6,7,8

а) В графе есть эйлеров путь. Доказать, что граф связен и вершин с нечётной степенью в нём не больше двух.
б) Доказать обратное: если в связном графе вершин с нечётной степенью не больше двух, то в нём есть эйлеров путь.

Прислать комментарий     Решение

Задача 31096  (#28)

Темы:   [ Степень вершины ]
[ Обход графов ]
Сложность: 3+
Классы: 6,7,8

Доказать, что связный граф можно обойти, проходя по каждому ребру дважды.

Прислать комментарий     Решение

Задача 31097  (#29)

Темы:   [ Обход графов ]
[ Четность и нечетность ]
[ Куб ]
[ Остовы многогранных фигур ]
Сложность: 3-
Классы: 6,7,8

а) Из какого минимального числа кусков проволоки можно спаять каркас куба?
б) Какой максимальной длины кусок проволоки можно вырезать из этого каркаса? (Длина ребра куба равна 1 см.)

Прислать комментарий     Решение

Задача 31098  (#30)

Темы:   [ Связность и разложение на связные компоненты ]
[ Деревья ]
Сложность: 3
Классы: 6,7,8

Доказать, что
  а) из связного графа можно выкинуть несколько рёбер так, чтобы осталось дерево;
  б) в дереве с n вершинами ровно  n – 1  ребро;
  в) в дереве не меньше двух висячих вершин;
  г) в связном графа из n вершин не меньше  n – 1  ребра;
  д) если в связном графе n вершин и  n – 1  ребро, то он – дерево.

Прислать комментарий     Решение

Задача 31099  (#31)

Тема:   [ Деревья ]
Сложность: 4-
Классы: 6,7,8

Есть волейбольная сетка 5×10. Какое максимальное число веревок, её составляющих, можно разрезать так, чтобы она не распалась?

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 180]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .