ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

У Вани работает 10 сотрудников. Каждый месяц Ваня повышает зарплату на 1 рубль ровно девятерым (по своему выбору).
Как Ване повышать зарплаты, чтобы сделать их одинаковыми? (Зарплата – целое число рублей.)

   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 7526]      



Задача 35695

Темы:   [ Теорема синусов ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 2+
Классы: 9

В окружность вписаны две равнобедренные трапеции с соответственно параллельными сторонами. Докажите, что диагональ одной из них равна диагонали другой трапеции.

Прислать комментарий     Решение

Задача 35703

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 7,8

У Вани работает 10 сотрудников. Каждый месяц Ваня повышает зарплату на 1 рубль ровно девятерым (по своему выбору).
Как Ване повышать зарплаты, чтобы сделать их одинаковыми? (Зарплата – целое число рублей.)

Прислать комментарий     Решение

Задача 35704

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 2+
Классы: 6,7,8

Расположите на плоскости шесть прямых и отметьте на них семь точек так, чтобы на каждой прямой было отмечено три точки.

Прислать комментарий     Решение

Задача 35709

Темы:   [ Невыпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2+
Классы: 7,8,9

Существуют ли несколько невыпуклых многоугольников, из которых можно составить выпуклый?
Прислать комментарий     Решение


Задача 35765

Темы:   [ Степень вершины ]
[ Комбинаторная геометрия (прочее) ]
[ Остовы многогранных фигур ]
Сложность: 2+
Классы: 8,9

Докажите, что не существует многогранника, у которого было бы ровно семь рёбер.

Прислать комментарий     Решение

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .