Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Даны два многочлена P(x) и Q(x) положительной степени, причём  P(P(x)) ≡ Q(Q(x))  и  P(P(P(x))) ≡ Q(Q(Q(x))).
Обязательно ли тогда  P(x) ≡ Q(x)?

Вниз   Решение


Дан выпуклый пятиугольник $ABCDE$, в котором  AE || CD  и  $AB = BC$.  Биссектрисы его углов $A$ и $C$ пересекаются в точке $K$. Докажите, что  BK || AE.

ВверхВниз   Решение


Автор: Азов Д.Г.

  а) На бесконечном листе клетчатой бумаги двое играют в такую игру: первый окрашивает произвольную клетку в красный цвет; второй окрашивает произвольную неокрашенную клетку в синий цвет; затем первый окрашивает произвольную неокрашенную клетку в красный цвет, а второй еще одну неокрашенную клетку в синий цвет и т. д. Первый стремится к тому, чтобы центры каких-то четырёх красных клеток образовали квадрат со сторонами, параллельными линиям сетки, а второй хочет ему помешать. Может ли выиграть первый игрок?
  б) Каков будет ответ на этот вопрос, если второй игрок закрашивает синим цветом сразу по две клетки?

ВверхВниз   Решение


Сколько существует разных способов разбить число 2004 на натуральные слагаемые, которые приблизительно равны? Слагаемых может быть одно или несколько. Числа называются приблизительно равными, если их разность не больше 1. Способы, отличающиеся только порядком слагаемых, считаются одинаковыми.

ВверхВниз   Решение


Вписанная окружность треугольника ABC касается сторон BC, CA и AB в точках A', B' и C'. Известно, что  AA' = BB' = CC'.
Обязательно ли треугольник ABC правильный?

ВверхВниз   Решение


Докажите, что биссектрисы треугольника пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 176]      



Задача 53320  (#05.000.1)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства ]
Сложность: 2+
Классы: 8,9

Докажите, что треугольник ABC равнобедренный, если у него:
  а) медиана BD является высотой;
  б) высота BD является биссектрисой.

Прислать комментарий     Решение

Задача 53412  (#05.000.2)

Темы:   [ Свойства биссектрис, конкуррентность ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9

Докажите, что биссектрисы треугольника пересекаются в одной точке.

Прислать комментарий     Решение

Задача 56828  (#05.000.3)

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - прямая или отрезок ]
Сложность: 2-
Классы: 7,8

На высоте AH треугольника ABC взята точка M. Докажите, что  AB² – AC² = MB² – MC².

Прислать комментарий     Решение

Задача 56829  (#05.000.4)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3-
Классы: 7,8

На сторонах  AB, BC, CA правильного треугольника ABC взяты точки P, Q, R так, что  AP : PB = BQ : QC = CR : RA = 2 : 1.
Докажите, что стороны треугольника PQR перпендикулярны сторонам треугольника ABC.

Прислать комментарий     Решение

Задача 56830  (#05.001)

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 2+
Классы: 7,8,9

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем  AC1 = AB1, BA1 = BC1 и CA1 = CB1. Докажите, что A1, B1 и C1 — точки касания вписанной окружности со сторонами.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 176]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .