Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Найдите  (xn – 1, xm – 1).

Вниз   Решение


Шестиугольник ABCDEF вписан в окружность радиуса R с центром O, причём  AB = CD = EF = R.  Докажите, что точки попарного пересечения описанных окружностей треугольников BOC, DOE и FOA, отличные от точки O, являются вершинами правильного треугольника со стороной R.

ВверхВниз   Решение


Докажите, что   .

ВверхВниз   Решение


На окружности S с диаметром AB взята точка C, из точки C опущен перпендикуляр CH на прямую AB. Докажите, что общая хорда окружности S и окружности S1 с центром C и радиусом CH делит отрезок CH пополам.

ВверхВниз   Решение


Даны диаметр AB окружности и точка C, не лежащая на прямой AB. С помощью одной линейки (без циркуля) опустите перпендикуляр из точки C на AB, если: а) точка C не лежит на окружности; б) точка C лежит на окружности.

ВверхВниз   Решение


Колоду из 52 карт разложили в виде прямоугольника 13×4. Известно, что если две карты лежат рядом по вертикали или горизонтали, то они одной масти либо одного достоинства. Докажите, что в каждом горизонтальном ряду (из 13 карт) все карты одной масти.

ВверхВниз   Решение


Докажите справедливость формулы  

ВверхВниз   Решение


Пусть P(x) и Q(x) – многочлены, причём Q(x) не равен нулю тождественно и P(x) не делится на Q(x). Докажите, что при некотором  s ≥ 1  существуют такие многочлены  A0(x), A1(x), ..., As(x)  и  R1(x), ..., Rs(x),  что  degQ(x) > degR1(x) > degR2(x) > ... > degRs(x) ≥ 0,
    P(x) = Q(x)A0(x) + R1(x),
    Q(x) = R1(x)A1(x) + R2(x),
    R1(x) = R2(x)A2(x) + R3(x),
      ...
    Rs–2(x) = Rs–1(x)As–1(x) + Rs(x),
    Rs–1(x) = Rs(x)As(x)
и  (P(x), Q(x)) = Rs(x).

ВверхВниз   Решение


Среднее арифметическое четырёх чисел равно 10. Если вычеркнуть одно из этих чисел, то среднее арифметическое оставшихся трёх увеличится на 1, если вместо этого вычеркнуть другое число, то среднее арифметическое оставшихся чисел увеличится на 2, а если вычеркнуть третье число, то среднее арифметическое оставшихся увеличится на 3. Как изменится среднее арифметическое трёх оставшихся чисел, если вычеркнуть четвёртое число?

ВверхВниз   Решение


а) На сторонах произвольного треугольника внешним образом построены правильные треугольники. Докажите, что их центры образуют правильный треугольник.
б) Докажите аналогичное утверждение для треугольников, построенных внутренним образом.
в) Докажите, что разность площадей правильных треугольников, полученных в задачах а) и б), равна площади исходного треугольника.

ВверхВниз   Решение


При каких значениях параметра a многочлен  P(x) = xn + axn–2  (n ≥ 2)  делится на  x – 2 ?

ВверхВниз   Решение


На сторонах произвольного выпуклого четырёхугольника внешним образом построены квадраты. Докажите, что отрезки, соединяющие центры противоположных квадратов, равны и перпендикулярны.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 53]      



Задача 57954  (#18.032)

Тема:   [ Поворот (прочее) ]
Сложность: 7
Классы: 9

По арене цирка, являющейся кругом радиуса 10 м, бегает лев. Двигаясь по ломаной линии, он пробежал 30 км. Докажите, что сумма всех углов его поворотов не меньше 2998 радиан.
Прислать комментарий     Решение


Задача 57955  (#18.033)

Тема:   [ Композиции поворотов ]
Сложность: 4
Классы: 9

Докажите, что композиция двух поворотов на углы, в сумме не кратные  360o, является поворотом. В какой точке находится его центр и чему равен угол поворота? Исследуйте также случай, когда сумма углов поворотов кратна  360o.
Прислать комментарий     Решение


Задача 55744  (#18.034)

Темы:   [ Композиции поворотов ]
[ Поворот на $90^\circ$ ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Поворот помогает решить задачу ]
Сложность: 5-
Классы: 8,9

На сторонах произвольного выпуклого четырёхугольника внешним образом построены квадраты. Докажите, что отрезки, соединяющие центры противоположных квадратов, равны и перпендикулярны.

Прислать комментарий     Решение


Задача 57957  (#18.035)

Темы:   [ Композиции поворотов ]
[ Признаки и свойства параллелограмма ]
[ Поворот помогает решить задачу ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9

На сторонах параллелограмма внешним образом построены квадраты. Докажите, что их центры образуют квадрат.
Прислать комментарий     Решение


Задача 57958  (#18.036)

Тема:   [ Композиции поворотов ]
Сложность: 4
Классы: 9

На сторонах треугольника ABC внешним образом построены квадраты с центрами P, Q и R. На сторонах треугольника PQR внутренним образом построены квадраты. Докажите, что их центры являются серединами сторон треугольника ABC.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .