ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах треугольника ABC как на основаниях построены подобные равнобедренные треугольники AB1С и AC1B внешним образом и BA1C внутренним образом. Докажите, что AB1A1C1 – параллелограмм.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 85]      



Задача 56501  (#01.045)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
[ Параллелограммы (прочее) ]
Сложность: 3
Классы: 8,9

На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCK и DCL.
Докажите, что треугольник AKL правильный.

Прислать комментарий     Решение

Задача 56502  (#01.046)

Темы:   [ Признаки и свойства параллелограмма ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

На сторонах параллелограмма внешним образом построены квадраты. Докажите, что их центры образуют квадрат.

Прислать комментарий     Решение

Задача 56503  (#01.047)

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 8,9

На сторонах произвольного треугольника ABC внешним образом построены равнобедренные треугольники с углами 2α, 2β и 2γ при вершинах A', B' и C', причём  α + β + γ = 180°.  Докажите, что углы треугольника A'B'C' равны α, β и γ.

Прислать комментарий     Решение

Задача 56504  (#01.048)

Темы:   [ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

На сторонах треугольника ABC как на основаниях построены подобные равнобедренные треугольники AB1С и AC1B внешним образом и BA1C внутренним образом. Докажите, что AB1A1C1 – параллелограмм.

Прислать комментарий     Решение

Задача 56505  (#01.049)

Тема:   [ Подобные треугольники (прочее) ]
Сложность: 4
Классы: 8,9

а) На сторонах AB и AC треугольника ABC внешним образом построены прямоугольные треугольники ABC1 и AB1C, причём  ∠C1 = ∠B1 = 90°,
ABC1 = ∠ACB1 = φ,  M – середина BC. Докажите, что  MB1 = MC1 и  ∠B1MC1 = 2φ.

б) На сторонах треугольника ABC внешним образом построены правильные треугольники. Докажите, что их центры образуют правильный треугольник, причём его центр совпадает с точкой пересечения медиан треугольника ABC.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 85]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .