Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Делимое в шесть раз больше делителя, а делитель в шесть раз больше частного. Чему равны делимое, делитель и частное?

Вниз   Решение


В равносторонний треугольник со стороной a вписана окружность. К окружности проведена касательная, отрезок которой внутри треугольника равен b.
Найдите площадь треугольника, отсечённого этой касательной.

ВверхВниз   Решение


Бумажный прямоугольный треугольник АВС перегнули по прямой так, что вершина С прямого угла совместилась с вершиной В и получился четырёхугольник. В каких отношениях точка пересечения диагоналей четырёхугольника делит эти диагонали?

ВверхВниз   Решение


В лесу растет миллион елок. Известно, что на каждой из них не более 600000 иголок. Докажите, что в лесу найдутся две елки с одинаковым числом иголок.

ВверхВниз   Решение


Приведите пример числа, делящегося на 2020, в котором каждая из десяти цифр встречается одинаковое количество раз.

ВверхВниз   Решение


На стороны BC и CD параллелограмма ABCD (или на их продолжения) опущены перпендикуляры AM и AN.
Докажите, что треугольники MAN и ABC подобны.

ВверхВниз   Решение


В треугольнике ABC угол A равен 40°. Треугольник случайным образом бросают на стол.
Найдите вероятность того, что вершина A окажется восточнее двух других вершин.

ВверхВниз   Решение


Найдите производящие функции последовательностей многочленов Чебышева первого и второго рода:

Определения многочленов Чебышева можно найти в справочнике.

ВверхВниз   Решение


На острове 100 рыцарей и 100 лжецов. У каждого из них есть хотя бы один друг. Однажды ровно 100 человек сказали: "Все мои друзья – рыцари", и ровно 100 человек сказали: "Все мои друзья – лжецы". Каково наименьшее возможное количество пар друзей, один из которых рыцарь, а другой лжец?

ВверхВниз   Решение


Один из четырёх углов, образующихся при пересечении двух прямых, равен 41°. Чему равны три остальных угла?

ВверхВниз   Решение


Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?

ВверхВниз   Решение


Назовем расстановку n единиц и m нулей по кругу хорошей, если в ней можно поменять местами соседние нуль и единицу так, что получится расстановка, отличающаяся от исходной поворотом. При каких натуральных n, m существует хорошая расстановка?

ВверхВниз   Решение


Продолжение биссектрисы AD остроугольного треугольника ABC пересекает описанную окружность в точке E. Из точки D на стороны AB и AC опущены перпендикуляры DP и DQ. Докажите, что  SABC = SAPEQ.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 56609

Тема:   [ Биссектриса делит дугу пополам ]
Сложность: 3
Классы: 8,9

Известно, что в некотором треугольнике медиана, биссектриса и высота, проведенные из вершины C, делят угол на четыре равные части. Найдите углы этого треугольника.
Прислать комментарий     Решение


Задача 56610

Тема:   [ Биссектриса делит дугу пополам ]
Сложность: 3
Классы: 8,9

Докажите, что в любом треугольнике ABC биссектриса AE лежит между медианой AM и высотой AH.
Прислать комментарий     Решение


Задача 56611

Тема:   [ Биссектриса делит дугу пополам ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC. На его стороне AB выбирается точка P и через нее проводятся прямые PM и PN, параллельные AC и BC соответственно (точки M и N лежат на сторонах BC и AC); Q — точка пересечения описанных окружностей треугольников APN и BPM. Докажите, что все прямые PQ проходят через фиксированную точку.
Прислать комментарий     Решение


Задача 56612

Тема:   [ Биссектриса делит дугу пополам ]
Сложность: 4
Классы: 8,9

Продолжение биссектрисы AD остроугольного треугольника ABC пересекает описанную окружность в точке E. Из точки D на стороны AB и AC опущены перпендикуляры DP и DQ. Докажите, что  SABC = SAPEQ.
Прислать комментарий     Решение


Задача 52422

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Биссектриса делит дугу пополам ]
Сложность: 4+
Классы: 8,9

В треугольнике ABC стороны AC и BC не равны. Докажите, что биссектриса угла C делит пополам угол между медианой и высотой, проведёнными из вершины C, тогда и только тогда, когда $ \angle$C = 90o.

Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .