Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

На отрезке MN построены подобные, одинаково ориентированные треугольники AMN, NBM и MNC (см. рис.).
Докажите, что треугольник ABC подобен всем этим треугольникам, а центр его описанной окружности равноудален от точек M и N.

Вниз   Решение


Докажите, что выпуклый пятиугольник ABCDE с равными сторонами, углы которого удовлетворяют неравенствам  $ \angle$A $ \geq$ $ \angle$B $ \geq$ $ \angle$C $ \geq$ $ \angle$D $ \geq$ $ \angle$E, является правильным.

ВверхВниз   Решение


Неравенство

Aa(Bb + Cc) + Bb(Cc + Aa) + Cc(Aa + Bb) > $\displaystyle {\textstyle\frac{1}{2}}$(ABc2 + BCa2 + CAb2),

где a > 0, b > 0, c > 0 — данные числа, выполняется для всех A > 0, B > 0, C > 0. Можно ли из отрезков a, b, c составить треугольник?

ВверхВниз   Решение


Две окружности касаются друг друга внешним образом и третьей изнутри. Проводятся внешняя и внутренняя общие касательные к первым двум окружностям. Доказать, что внутренняя касательная делит пополам дугу, отсекаемую внешней касательной на третьей окружности.

ВверхВниз   Решение


В турнире собираются принять участие 25 шахматистов. Все они играют в разную силу, и при встрече всегда побеждает сильнейший.
Какое наименьшее число партий требуется, чтобы определить двух сильнейших игроков?

ВверхВниз   Решение


Докажите, что точки, симметричные точке пересечения высот треугольника ABC относительно его сторон, лежат на описанной окружности.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 176]      



Задача 56836  (#05.007)

Тема:   [ Вписанные и описанные окружности ]
Сложность: 5
Классы: 8

В неравнобедренном треугольнике ABC через середину M стороны BC и центр O вписанной окружности проведена прямая MO, пересекающая высоту AH в точке E. Докажите, что AE = r.
Прислать комментарий     Решение


Задача 56837  (#05.008)

Тема:   [ Вписанные и описанные окружности ]
Сложность: 5
Классы: 8

Окружность касается сторон угла с вершиной A в точках P и Q. Расстояния от точек P, Q и A до некоторой касательной к этой окружности равны u, v и w. Докажите, что  uv/w2 = sin2(A/2).
Прислать комментарий     Решение


Задача 56838  (#05.008.1)

Тема:   [ Вписанные и описанные окружности ]
Сложность: 6
Классы: 8

а) На стороне AB треугольника ABC взята точка P. Пусть r, r1 и r2 — радиусы вписанных окружностей треугольников ABC, BCP и ACP; h — высота, опущенная из вершины C. Докажите, что r = r1 + r2 - 2r1r2/h.
б) Точки A1, A2, A3,... лежат на одной прямой (в указанном порядке). Докажите, что если радиусы вписанных окружностей всех треугольников BAiAi + 1 равны одному и тому же числу r1, то радиусы вписанных окружностей всех треугольников BAiAi + k равны одному и тому же числу rk.
Прислать комментарий     Решение


Задача 56839  (#05.009)

Тема:   [ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8

Докажите, что точки, симметричные точке пересечения высот треугольника ABC относительно его сторон, лежат на описанной окружности.
Прислать комментарий     Решение


Задача 56840  (#05.010)

Тема:   [ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8

Из точки P дуги BC описанной окружности треугольника ABC опущены перпендикуляры PX, PY и PZ на BC, CA и AB соответственно. Докажите, что  $ {\frac{BC}{PX}}$ = $ {\frac{AC}{PY}}$ + $ {\frac{AB}{PZ}}$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 176]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .