ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Квадрат со стороной 1 покрыт несколькими меньшими квадратами
со сторонами, параллельными его сторонам. Докажите, что среди
них можно выбрать непересекающиеся квадраты, сумма площадей
которых не меньше 1/9.
Точка $X$ расположена внутри параллелограмма $ABCD$. Докажите, что $S_{ABX}+S_{CDX}=S_{BCX}+S_{ADX}$. На плоскости лежат две одинаковые буквы а) Определение (смотри в справочнике)
функций gk,l(x) не позволяет вычислять их значения при x = 1. Но, поскольку функции gk,l(x) являются многочленами, они определены и при x = 1. Докажите равенство б) Какие свойства биномиальных коэффициентов получаются, если в свойства б) – г) из задачи 61522 подставить значение x = 1? В пачке 20 карточек: синие, красные и желтые. Синих в шесть раз меньше, чем желтых, и красных меньше, чем желтых. Какое наименьшее количество карточек надо вытащить не глядя, чтобы среди них обязательно оказалась красная? Треугольник, составленный: а) из медиан; б) из высот треугольника ABC, подобен треугольнику ABC. На клетчатом листе закрасили 25 клеток. Может ли каждая из них иметь нечётное число закрашенных соседей? Разрежьте правильный шестиугольник на 5 частей и сложите из них
квадрат.
На отрезке длиной 1 расположено несколько отрезков, полностью
его покрывающих. Докажите, что можно выбросить некоторые из них
так, чтобы оставшиеся по-прежнему покрывали отрезок и сумма их
длин не превосходила 2.
Поворот с центром O переводит прямую l1 в прямую l2, а точку A1, лежащую на прямой l1, — в точку A2.
Докажите, что точка пересечения прямых l1 и l2 лежит на
описанной окружности треугольника A1OA2.
Треугольники ABC и A1B1C1 таковы, что их соответственные углы равны или составляют в сумме 180°. Вписанная окружность треугольника ABC касается сторон CA и AB в точках B1 и C1, а вневписанная окружность касается продолжения этих сторон в точках B2 и C2. Докажите, что середина стороны BC равноудалена от прямых B1C1 и B2C2. |
Страница: 1 2 >> [Всего задач: 7]
Вписанная окружность прямоугольного треугольника ABC касается гипотенузы AB в точке P, CH – высота треугольника ABC.
В треугольнике ABC проведена биссектриса AD. Пусть O, O1 и O2 – центры описанных окружностей треугольников ABC, ABD и ACD.
Треугольник, составленный: а) из медиан; б) из высот треугольника ABC, подобен треугольнику ABC.
В треугольнике ABC проведены высоты BB1 и CC1. Докажите, что если ∠A = 45°, то B1C1 – диаметр окружности девяти точек треугольника ABC.
Вписанная окружность треугольника ABC касается сторон CA и AB в точках B1 и C1, а вневписанная окружность касается продолжения этих сторон в точках B2 и C2. Докажите, что середина стороны BC равноудалена от прямых B1C1 и B2C2.
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке