Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Постройте образ точки A при инверсии относительно окружности S с центром O.

Вниз   Решение


Дан угол ABC и прямая l. Постройте прямую, параллельную прямой l, на которой стороны угла ABC высекают отрезок данной длины a.

ВверхВниз   Решение


Пусть a < b. Докажите, что  a + ha $ \leq$ b + hb.

ВверхВниз   Решение


Вокруг эллипса описан прямоугольник. Докажите, что длина его диагонали не зависит от положения прямоугольника.

ВверхВниз   Решение


Каждая диагональ выпуклого пятиугольника ABCDE отсекает от него треугольник единичной площади. Вычислите площадь пятиугольника ABCDE.

ВверхВниз   Решение


На плоскости расположено n$ \ge$5 окружностей так, что любые три из них имеют общую точку. Докажите, что тогда и все окружности имеют общую точку.

ВверхВниз   Решение


Докажите, что если вершины выпуклого n-угольника лежат в узлах клетчатой бумаги, а внутри и на его сторонах других узлов нет, то  n ≤ 4.

ВверхВниз   Решение


В сегмент вписываются всевозможные пары пересекающихся окружностей, и для каждой пары через точки их пересечения проводится прямая. Докажите, что все эти прямые проходят через одну точку (см. задачу 3.44).

ВверхВниз   Решение


Впишите в данную окружность n-угольник, одна из сторон которого проходит через данную точку, а остальные стороны параллельны данным прямым.

ВверхВниз   Решение


Докажите, что 3$ \left(\vphantom{\frac{a}{r_a}+\frac{b}{r_b}+\frac{c}{r_c}}\right.$$ {\frac{a}{r_a}}$ + $ {\frac{b}{r_b}}$ + $ {\frac{c}{r_c}}$$ \left.\vphantom{\frac{a}{r_a}+\frac{b}{r_b}+\frac{c}{r_c}}\right)$ $ \geq$ 4$ \left(\vphantom{\frac{r_a}{a}+\frac{r_b}{b}+\frac{r_c}{c}}\right.$$ {\frac{r_a}{a}}$ + $ {\frac{r_b}{b}}$ + $ {\frac{r_c}{c}}$$ \left.\vphantom{\frac{r_a}{a}+\frac{r_b}{b}+\frac{r_c}{c}}\right)$.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 100]      



Задача 57439  (#10.029)

Тема:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 5
Классы: 8,9

Докажите, что  27Rr $ \leq$ 2p2 $ \leq$ 27R2/2.
Прислать комментарий     Решение


Задача 57440  (#10.030)

Тема:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 5
Классы: 8,9

Пусть O — центр вписанной окружности треугольника ABC, причем  OA $ \geq$ OB $ \geq$ OC. Докажите, что OA $ \geq$ 2r и  OB $ \geq$ r$ \sqrt{2}$.
Прислать комментарий     Решение


Задача 57441  (#10.031)

Тема:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 5
Классы: 8,9

Докажите, что сумма расстояний от любой точки внутри треугольника до его вершин не меньше 6r.
Прислать комментарий     Решение


Задача 57442  (#10.032)

Тема:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 5
Классы: 8,9

Докажите, что 3$ \left(\vphantom{\frac{a}{r_a}+\frac{b}{r_b}+\frac{c}{r_c}}\right.$$ {\frac{a}{r_a}}$ + $ {\frac{b}{r_b}}$ + $ {\frac{c}{r_c}}$$ \left.\vphantom{\frac{a}{r_a}+\frac{b}{r_b}+\frac{c}{r_c}}\right)$ $ \geq$ 4$ \left(\vphantom{\frac{r_a}{a}+\frac{r_b}{b}+\frac{r_c}{c}}\right.$$ {\frac{r_a}{a}}$ + $ {\frac{r_b}{b}}$ + $ {\frac{r_c}{c}}$$ \left.\vphantom{\frac{r_a}{a}+\frac{r_b}{b}+\frac{r_c}{c}}\right)$.
Прислать комментарий     Решение


Задача 57443  (#10.033)

Тема:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 6
Классы: 8,9

Докажите, что
а)  5R - r $ \geq$ $ \sqrt{3}$p;
б)  4R - ra $ \geq$ (p - a)[$ \sqrt{3}$ + (a2 + (b - c)2)/(2S)].
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .