Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 23 задачи
Версия для печати
Убрать все задачи

Сумма углов n-угольника. Докажите, что произвольный n-угольник (не обязательно выпуклый) можно разрезать на треугольники непересекающимися диагоналями. Выведите отсюда, что сумма углов в произвольном n-угольнике равна (n - 2)$ \pi$.

Вниз   Решение


При каких n многочлен  1 + x² + x4 + ... + x2n–2  делится на  1 + x + x2 + ... + xn–1?

ВверхВниз   Решение


Докажите, что для любого натурального n  25n+3 + 5n·3n+2  делится на 17.

ВверхВниз   Решение


На сколько частей делят пространство n плоскостей "общего положения"? И что это за "общее положение"?

ВверхВниз   Решение


Пусть m1(x), ..., mn(x) – попарно взаимно простые многочлены, a1(x), ..., an(x) – произвольные многочлены.
Докажите, что существует ровно один такой многочлен p(x), что
    p(x) ≡ a1(x) (mod m1(x)),
      ...
    p(x) ≡ an(x) (mod mn(x))
и  deg p(x) < deg m1(x) + ... + deg mn(x).

ВверхВниз   Решение


Многочлен P(x) дает остаток 2 при делении на  x – 1,  и остаток 1 при делении на  x – 2.
Какой остаток дает P(x) при делении на многочлен  (x – 1)(x – 2)?

ВверхВниз   Решение


Многоугольник имеет центр симметрии O. Докажите, что сумма расстояний до вершин минимальна для точки O.

ВверхВниз   Решение


Из точки M описанной окружности треугольника ABC опущены перпендикуляры MP и MQ на прямые AB и AC. При каком положении точки M длина отрезка PQ максимальна?

ВверхВниз   Решение


Внутри выпуклого четырехугольника найдите точку, сумма расстояний от которой до вершин была бы наименьшей.

ВверхВниз   Решение


Найдите необходимое и достаточное условие для того, чтобы выражение  x³ + y³ + z³ + kxyz  делилось на  x + y + z.

ВверхВниз   Решение


Докажите, что для любого натурального n число  32n+2 + 8n – 9  делится на 16.

ВверхВниз   Решение


Найдите внутри треугольника ABC точку O, для которой сумма квадратов расстояний от нее до сторон треугольника минимальна.

ВверхВниз   Решение


Внутри острого угла BAC дана точка M. Постройте на сторонах BA и AC точки X и Y так, чтобы периметр треугольника XYM был минимальным.

ВверхВниз   Решение


Докажите, что среди всех четырехугольников с фиксированными длинами сторон наибольшую площадь имеет вписанный четырехугольник.

ВверхВниз   Решение


На одной стороне острого угла даны точки A и B. Постройте на другой его стороне точку C, из которой отрезок AB виден под наибольшим углом.

ВверхВниз   Решение


Докажите, что для любого натурального n  62n+1 + 1  делится на 7.

ВверхВниз   Решение


Докажите, что многочлен  P(x) = (x + 1)6x6 – 2x – 1  делится на  x(x + 1)(2x + 1).

ВверхВниз   Решение


Даны угол XAY и окружность внутри его. Постройте точку окружности, сумма расстояний от которой до прямых AX и AY минимальна.

ВверхВниз   Решение


Площадь трапеции равна 1. Какую наименьшую величину может иметь наибольшая диагональ этой трапеции?

ВверхВниз   Решение


Точки A1, B1 и C1 взяты на сторонах BC, CA и AB треугольника ABC, причём отрезки AA1, BB1 и CC1 пересекаются в одной точке M.
При каком положении точки M величина  MA1/AA1·MB1/BB1·MC1/CC1 максимальна?

ВверхВниз   Решение


Из точки M, лежащей внутри данного треугольника ABC, опущены перпендикуляры MA1, MB1, MC1 на прямые BC, CA, AB. Для каких точек M внутри данного треугольника ABC величина     принимает наименьшее значение?

ВверхВниз   Решение


Докажите, что  11n+2 + 122n+1  делится на 133 при любом натуральном n.

ВверхВниз   Решение


Дан треугольник ABC. Найдите внутри его точку O, для которой сумма длин отрезков OA, OB, OC минимальна. (Обратите внимание на тот случай, когда один из углов треугольника больше 120o.)

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



Задача 57541  (#11.021)

 [Точка Торричелли]
Темы:   [ Экстремальные точки треугольника ]
[ Точка Торричелли ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 6
Классы: 8,9,10

Дан треугольник ABC. Найдите внутри его точку O, для которой сумма длин отрезков OA, OB, OC минимальна. (Обратите внимание на тот случай, когда один из углов треугольника больше 120o.)
Прислать комментарий     Решение


Задача 57542  (#11.022)

Темы:   [ Экстремальные точки треугольника ]
[ Выход в пространство ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Уравнение плоскости ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 6
Классы: 9,10,11

Найдите внутри треугольника ABC точку O, для которой сумма квадратов расстояний от нее до сторон треугольника минимальна.
Прислать комментарий     Решение


Задача 57543  (#11.023)

Тема:   [ Угол (экстремальные свойства) ]
Сложность: 2+
Классы: 9

На одной стороне острого угла даны точки A и B. Постройте на другой его стороне точку C, из которой отрезок AB виден под наибольшим углом.
Прислать комментарий     Решение


Задача 57544  (#11.024)

Темы:   [ Угол (экстремальные свойства) ]
[ Центральная симметрия помогает решить задачу ]
[ Перегруппировка площадей ]
[ Неравенства с площадями ]
Сложность: 4+
Классы: 8,9,10

Дан угол XAY и точка O внутри его. Проведите через точку O прямую, отсекающую от данного угла треугольник наименьшей площади.
Прислать комментарий     Решение


Задача 57545  (#11.025)

Тема:   [ Угол (экстремальные свойства) ]
Сложность: 3
Классы: 9

Проведите через данную точку P, лежащую внутри угла AOB, прямую MN так, чтобы величина OM + ON была минимальной (точки M и N лежат на сторонах OA и OB).
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .