ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Сумма углов n-угольника.
Докажите, что произвольный n-угольник (не обязательно выпуклый) можно разрезать на треугольники непересекающимися диагоналями.
Выведите отсюда, что сумма углов в произвольном n-угольнике
равна (n - 2) При каких n многочлен 1 + x² + x4 + ... + x2n–2 делится на 1 + x + x2 + ... + xn–1? Докажите, что для любого натурального n 25n+3 + 5n·3n+2 делится на 17. На сколько частей делят пространство n плоскостей "общего положения"? И что это за "общее положение"? Пусть m1(x), ..., mn(x) – попарно взаимно простые многочлены, a1(x), ..., an(x) – произвольные многочлены. Многочлен P(x) дает остаток 2 при делении на x – 1, и остаток 1 при делении на x – 2. Многоугольник имеет центр симметрии O. Докажите, что сумма расстояний
до вершин минимальна для точки O.
Из точки M описанной окружности треугольника ABC опущены
перпендикуляры MP и MQ на прямые AB и AC. При каком
положении точки M длина отрезка PQ максимальна?
Внутри выпуклого четырехугольника найдите точку, сумма расстояний
от которой до вершин была бы наименьшей.
Найдите необходимое и достаточное условие для того, чтобы выражение x³ + y³ + z³ + kxyz делилось на x + y + z. Докажите, что для любого натурального n число 32n+2 + 8n – 9 делится на 16. Найдите внутри треугольника ABC точку O, для которой сумма
квадратов расстояний от нее до сторон треугольника минимальна.
Внутри острого угла BAC дана точка M. Постройте на сторонах BA
и AC точки X и Y так, чтобы периметр треугольника XYM был
минимальным.
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]
Даны угол XAY и окружность внутри его. Постройте точку окружности,
сумма расстояний от которой до прямых AX и AY минимальна.
Внутри острого угла BAC дана точка M. Постройте на сторонах BA
и AC точки X и Y так, чтобы периметр треугольника XYM был
минимальным.
Дан угол XAY. Концы B и C отрезков BO и CO длиной 1
перемещаются по лучам AX и AY. Постройте четырехугольник ABOC
наибольшей площади.
Внутри выпуклого четырехугольника найдите точку, сумма расстояний
от которой до вершин была бы наименьшей.
Диагонали выпуклого четырехугольника ABCD пересекаются в точке O.
Какую наименьшую площадь может иметь этот четырехугольник, если
площадь треугольника AOB равна 4, а площадь треугольника COD
равна 9?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке