ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Сумма углов n-угольника.
Докажите, что произвольный n-угольник (не обязательно выпуклый) можно разрезать на треугольники непересекающимися диагоналями.
Выведите отсюда, что сумма углов в произвольном n-угольнике
равна (n - 2) При каких n многочлен 1 + x² + x4 + ... + x2n–2 делится на 1 + x + x2 + ... + xn–1? Докажите, что для любого натурального n 25n+3 + 5n·3n+2 делится на 17. На сколько частей делят пространство n плоскостей "общего положения"? И что это за "общее положение"? Пусть m1(x), ..., mn(x) – попарно взаимно простые многочлены, a1(x), ..., an(x) – произвольные многочлены. Многочлен P(x) дает остаток 2 при делении на x – 1, и остаток 1 при делении на x – 2. Многоугольник имеет центр симметрии O. Докажите, что сумма расстояний
до вершин минимальна для точки O.
Из точки M описанной окружности треугольника ABC опущены
перпендикуляры MP и MQ на прямые AB и AC. При каком
положении точки M длина отрезка PQ максимальна?
Внутри выпуклого четырехугольника найдите точку, сумма расстояний
от которой до вершин была бы наименьшей.
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]
Даны угол XAY и окружность внутри его. Постройте точку окружности,
сумма расстояний от которой до прямых AX и AY минимальна.
Внутри острого угла BAC дана точка M. Постройте на сторонах BA
и AC точки X и Y так, чтобы периметр треугольника XYM был
минимальным.
Дан угол XAY. Концы B и C отрезков BO и CO длиной 1
перемещаются по лучам AX и AY. Постройте четырехугольник ABOC
наибольшей площади.
Внутри выпуклого четырехугольника найдите точку, сумма расстояний
от которой до вершин была бы наименьшей.
Диагонали выпуклого четырехугольника ABCD пересекаются в точке O.
Какую наименьшую площадь может иметь этот четырехугольник, если
площадь треугольника AOB равна 4, а площадь треугольника COD
равна 9?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке