Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

На стороне AB четырехугольника ABCD взяты точки A1 и B1, а на стороне CD — точки C1 и D1, причем  AA1 = BB1 = pAB и  CC1 = DD1 = pCD, где p < 0, 5. Докажите, что  SA1B1C1D1/SABCD = 1 - 2p.

Вниз   Решение


а) Докажите, что отношение расстояний от точки эллипса до фокуса и до одной из директрис равно эксцентриситету e.
б) Даны точка F и прямая l. Докажите, что множество точек X, для которых отношение расстояния от X до F к расстоянию от X до l равно постоянному числу e < 1, — эллипс.

ВверхВниз   Решение


Квадрат разделен на четыре части двумя перпендикулярными прямыми, точка пересечения которых лежит внутри его. Докажите, что если площади трех из этих частей равны, то равны и площади всех четырех частей.

ВверхВниз   Решение


Шестиугольник ABCDEF вписан в окружность. Диагонали AD, BE и CF являются диаметрами этой окружности. Докажите, что площадь шестиугольника ABCDEF равна удвоенной площади треугольника ACE.

ВверхВниз   Решение


Даны окружность и две точки A и B внутри ее. Впишите в окружность прямоугольный треугольник так, чтобы его катеты проходили через данные точки.

ВверхВниз   Решение


Никакие три из четырех точек A, B, C, D не лежат на одной прямой. Докажите, что угол между описанными окружностями треугольников ABC и ABD равен углу между описанными окружностями треугольников ACD и BCD.

ВверхВниз   Решение


Докажите, что  $ {\frac{1}{ab}}$ + $ {\frac{1}{bc}}$ + $ {\frac{1}{ca}}$ = $ {\frac{1}{2Rr}}$.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 82]      



Задача 57612  (#12.029B)

Тема:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 5+
Классы: 9

Докажите, что если

sin$\displaystyle \alpha$ + sin$\displaystyle \beta$ + sin$\displaystyle \gamma$ = $\displaystyle \sqrt{3}$(cos$\displaystyle \alpha$ + cos$\displaystyle \beta$ + cos$\displaystyle \gamma$),

то один из углов треугольника ABC равен 60o.
Прислать комментарий     Решение

Задача 57613  (#12.030)

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 2+
Классы: 9

Докажите, что abc = 4prR и  ab + bc + ca = r2 + p2 + 4rR.
Прислать комментарий     Решение


Задача 57614  (#12.031)

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 2+
Классы: 9

Докажите, что  $ {\frac{1}{ab}}$ + $ {\frac{1}{bc}}$ + $ {\frac{1}{ca}}$ = $ {\frac{1}{2Rr}}$.
Прислать комментарий     Решение


Задача 57615  (#12.032)

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 2+
Классы: 9

Докажите, что $ {\frac{a+b-c}{a+b+c}}$ = tg$ \left(\vphantom{\frac{\alpha }{2}}\right.$$ {\frac{\alpha }{2}}$$ \left.\vphantom{\frac{\alpha }{2}}\right)$tg$ \left(\vphantom{\frac{\beta }{2}}\right.$$ {\frac{\beta}{2}}$$ \left.\vphantom{\frac{\beta }{2}}\right)$.
Прислать комментарий     Решение


Задача 57616  (#12.033)

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 2+
Классы: 9

Докажите, что ha = bc/2R.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 82]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .