ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан треугольник ABC. Точка M, расположенная
внутри треугольника, движется параллельно стороне BC до
пересечения со стороной CA, затем параллельно AB до
пересечения с BC, затем параллельно AC до пересечения
с AB и т. д. Докажите, что через некоторое число шагов
траектория движения точки замкнется.
Докажите, что середины параллельных хорд эллипса лежат на одной прямой.
Постройте вписанный четырехугольник по четырем
сторонам (Брахмагупта).
У Царя Гвидона было 5 сыновей. Среди его потомков 100 имели каждый ровно по 3 сына, а остальные умерли бездетными. Пусть x = sin 18°. Докажите, что 4x² + 2x = 1. Докажите, что медианы разбивают треугольник на
шесть равновеликих треугольников.
Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых не превосходят n, расположенные в порядке возрастания (ряд Фарея). Пусть a/b и c/d – какие-то два соседних числа (дроби несократимы). Доказать, что |bc – ad| = 1. В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B. На плоскости дана несамопересекающаяся замкнутая ломаная, никакие три вершины которой не лежат на одной прямой. Назовём пару несоседних звеньев ломаной особой, если продолжение одного из них пересекает другое. Докажите, что число особых пар чётно. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]
На плоскости дана несамопересекающаяся замкнутая ломаная, никакие три вершины которой не лежат на одной прямой. Назовём пару несоседних звеньев ломаной особой, если продолжение одного из них пересекает другое. Докажите, что число особых пар чётно.
Вершины треугольника помечены цифрами 0, 1 и 2. Этот треугольник разбит на несколько треугольников таким образом, что никакая вершина одного треугольника не лежит на стороне другого. Вершинам исходного треугольника оставлены старые пометки, а дополнительные вершины получают номера 0, 1, 2, причём каждая вершина на стороне исходного треугольника должна быть помечена одной из пометок вершин этой стороны (см. рис.). Докажите, что существует треугольник разбиения, помеченный цифрами 0, 1, 2.
Вершины правильного 2n-угольника A1...A2n разбиты на n пар.
На рис. изображен шестиугольник, разбитый на чёрные и белые треугольники так, что каждые два треугольника имеют либо общую сторону (и тогда они окрашены в разные цвета), либо общую вершину, либо не имеют общих точек, а каждая сторона шестиугольника является стороной одного из черных треугольников. Докажите, что десятиугольник разбить таким образом нельзя.
Квадратный лист клетчатой бумаги разбит на меньшие квадраты отрезками, идущими по сторонам клеток.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке