ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли n раз рассадить 2n + 1 человека за круглым столом так, чтобы никакие двое не сидели рядом более одного раза, если а) n = 5; б) n = 10? M и N — точки пересечения двух окружностей с центрами O1 и O2. Прямая O1M пересекает 1-ю окружность в точке A1, а 2-ю в точке A2. Прямая O2M пересекает 1-ю окружность в точке B1, а 2-ю в точке B2. Доказать, что прямые A1B1, A2B2 и MN пересекаются в одной точке. Пусть $AL$ — биссектриса треугольника $ABC$, точка $D$ — ее середина, $E$ — проекция $D$ на $AB$. Известно, что $AC = 3 AE$. Докажите, что треугольник $CEL$ равнобедренный. В алфавите племени Мумбу-Юмбу есть лишь две буквы A и Б. Два разных слова обозначают одно и то же понятие, если одно из них может быть получено из другого с помощью следующих операций: В трапеции ABCD одно основание в два раза больше другого. Меньшее основание равно c. Диагонали трапеции пересекаются под прямым углом, а отношение боковых сторон равно k. Найдите боковые стороны трапеции. Пусть AE и CD – биссектрисы треугольника ABC, ∠BED = 2∠AED и ∠BDE = 2∠EDC. Докажите, что треугольник ABC – равнобедренный. Слово – любая конечная последовательность букв русского алфавита. Выясните, сколько различных слов можно составить из слов m и n – натуральные числа, m < n. Докажите, что
Найдите площадь равнобедренного треугольника, если высота, опущенная на основание, равна 10, а высота, опущенная на боковую сторону, равна 12.
Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
В окружности радиуса R проведены хорда AB и диаметр AC. Хорда PQ, перпендикулярная диаметру AC, пересекает хорду AB в точке M. Известно, что AB = a, PM : MQ = 3. Найдите AM.
Точки A, B, C, D лежат на одной прямой. Докажите,
что если (ABCD) = 1, то либо A = B, либо C = D.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]
Дано отображение прямой a на прямую b, сохраняющее двойное отношение
любой четверки точек. Докажите, что это отображение проективно.
Докажите, что преобразование P числовой прямой является проективным тогда и только тогда, когда оно представляется в виде
P(x) =
где a, b, c, d — такие числа, что
ad - bc
Точки A, B, C, D лежат на одной прямой. Докажите,
что если (ABCD) = 1, то либо A = B, либо C = D.
Даны прямая l, окружность и точки M, N, лежащие
на окружности и не лежащие на прямой l. Рассмотрим
отображение P прямой l на себя, являющееся композицией
проектирования прямой l на данную окружность из точки M
и проектирования окружности на прямую l из точки N.
(Если точка X лежит на прямой l, то P(X) есть пересечение
прямой NY с прямой l, где Y — отличная от M точка
пересечения прямой MX с данной окружностью.) Докажите,
что преобразование P проективно.
Даны прямая l, окружность и точка M, лежащая
на окружности и не лежащая на прямой l. Пусть PM —
проектирование прямой l на данную окружность из точки M
(точка X прямой отображается в отличную от M точку
пересечения прямой XM с окружностью), R — движение
плоскости, сохраняющее данную окружность (т. е. поворот плоскости
вокруг центра окружности или симметрия относительно
диаметра). Докажите, что композиция
PM-1oRoPM является
проективным преобразованием.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке