Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Коля Васин задумал число от 1 до 31 включительно и выбрал из 5 данных карточек

1 3 5 7
9 11 13 15
17 19 21 23
25 27 29 31
    
2 3 6 7
10 11 14 15
18 19 22 23
26 27 30 31
    
4 5 6 7
12 13 14 15
20 21 22 23
28 29 30 31

8 9 10 11
12 13 14 15
24 25 26 27
28 29 30 31
    
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
те, на которых это число присутствует. Как, зная эти карточки, угадать задуманное число? Какими должны быть карточки, чтобы по ним можно было угадывать числа от 1 до 63?

Вниз   Решение


Карточный фокус. а) Берется колода из 27 карт (без одной масти). Ваш друг загадывает одну из карт. После чего вы раскладываете все карты в три равные кучки, кладя каждый раз по одной карте (в первую кучку, затем во вторую, затем в третью, потом снова в первую и т. д.). Ваш друг указывает на ту кучку, в которой лежит его карта. Далее вы складываете все три кучки вместе, вставляя при этом указанную кучку между двумя другими. Эта процедура повторяется еще два раза. На каком месте в колоде окажется загаданная карта, после того, как вы сложите вместе три кучки в третий раз?
б) На каком месте окажется загаданная карта, если с самого начала было 3n (n < 9) карт?

ВверхВниз   Решение


Каждое из рёбер полного графа с 18 вершинами покрашено в один из двух цветов.
Докажите, что есть четыре вершины, все рёбра между которыми – одного цвета.

ВверхВниз   Решение


Для последовательности {an}

$\displaystyle \lim\limits_{n\to\infty}^{}$$\displaystyle \left(\vphantom{a_{n+1}-\dfrac{a_n}{2}}\right.$an + 1 - $\displaystyle {\dfrac{a_n}{2}}$$\displaystyle \left.\vphantom{a_{n+1}-\dfrac{a_n}{2}}\right)$ = 0.

Докажите, что $ \lim\limits_{n\to\infty}^{}$an = 0.

ВверхВниз   Решение


Докажите, что для любого плоского графа (в том числе и несвязного) справедливо неравенство  E ≤ 3V – 6.

ВверхВниз   Решение


Докажите, что для плоского связного графа справедливо неравенство  E ≤ 3V – 6.

ВверхВниз   Решение


Можно ли нарисовать правильный треугольник с вершинами в узлах квадратной сетки?

ВверхВниз   Решение


Найдите предел последовательности, которая задана условиями

a1 = 2,        an + 1 = $\displaystyle {\dfrac{a_n}{2}}$ + $\displaystyle {\dfrac{a_n^2}{8}}$    (n $\displaystyle \geqslant$ 1).


ВверхВниз   Решение


Докажите иррациональность следующих чисел:

а)   ;

б)   ;

в)   ;

г)   ;

д)  cos 10° ;

е)  tg 10° ;

ж)  sin 1° ;

з)  log23 .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 85]      



Задача 79423  (#05.011)

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
[ Десятичные дроби ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Найти все такие натуральные n, для которых числа 1/n и 1/n+1 выражаются конечными десятичными дробями.

Прислать комментарий     Решение

Задача 60850  (#05.012)

Темы:   [ Двоичная система счисления ]
[ Рациональные и иррациональные числа ]
Сложность: 4-
Классы: 9,10,11

Докажите, что среди чисел  [2k]  (k = 0, 1, ...)  бесконечно много составных.

Прислать комментарий     Решение

Задача 60851  (#05.013)

Темы:   [ Рациональные и иррациональные числа ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 8,9,10

Докажите иррациональность следующих чисел:

а)   ;

б)   ;

в)   ;

г)   ;

д)  cos 10° ;

е)  tg 10° ;

ж)  sin 1° ;

з)  log23 .

Прислать комментарий     Решение

Задача 60852  (#05.014)

 [Метод спуска]
Темы:   [ Уравнения в целых числах ]
[ Метод спуска ]
[ Арифметика остатков (прочее) ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Докажите, что уравнения
  а)  8x4 + 4y4 + 2z4 = t4;
  б)  x² + y² + z² = 2xyz;
  в)  x² + y² + z² + u² = 2xyzu;
  г)  3n = x² + y²
не имеют решений в натуральных числах.

Прислать комментарий     Решение

Задача 60853  (#05.015)

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

Докажите, что уравнение  x³ + x²y + y³ = 0  не имеет рациональных решений, кроме  (0, 0).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 85]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .