ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Построить прямоугольный треугольник по двум медианам, проведённым к катетам. a, b, c ≥ 0. Докажите, что 2(a³ + b³ + c³) ≥ a²b + ab² + a²c + ac² + b²c + bc². Верно ли, что из любых 10 отрезков найдутся три, из которых можно составить треугольник?
В равнобедренном треугольнике $ABC$ ($AB=AC$) проведена высота $AA_0$. Окружность $\gamma$ с центром в середине $AA_0$ касается прямых $AB$ и $AC$. Из точки $X$ прямой $BC$ проведены две касательные к $\gamma$. Докажите, что эти касательные высекают на прямых $AB$ и $AC$ равные отрезки. Докажите, что при любом x выполняется неравенство x(x + 1)(x + 2)(x + 3) ≥ –1. Найдите наибольший общий делитель многочленов P(x), Q(x) и представьте его в виде P(x)U(x) + Q(x)V(x): Найти последнюю цифру числа 1·2 + 2·3 + ... + 999·1000. Пусть (P(x), Q(x)) = D(x). Сколько цифр у числа 21000? На сколько нулей оканчивается число 9999 + 1? Сумма двух неотрицательных чисел равна 10. Какое максимальное и какое минимальное значение может принимать сумма их квадратов? Докажите, что для произвольных a, b, с равенство Определим последовательности {xn} и {yn} при помощи условий:
xn = xn - 1 + 2yn - 1sin2
Найдите выражение для xn и yn через n и |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 100]
Докажите, что при всех натуральных n
выполняется сравнение
[(1 +
Докажите, что последовательность an = 1 + 17n² (n ≥ 0) содержит бесконечно много квадратов целых чисел.
Определим последовательности {xn} и {yn} при помощи условий:
xn = xn - 1 + 2yn - 1sin2
Найдите выражение для xn и yn через n и
Пять моряков высадились на остров и к вечеру набрали кучу кокосовых орехов. Дележ отложили на утро. Один из них, проснувшись ночью, угостил одним орехом мартышку, а из остальных орехов взял себе точно пятую часть, после чего лёг спать и быстро уснул. За ночь так же поступили один за другим и остальные моряки; при этом каждый не знал о действиях предшественников. На утро они поделили оставшиеся орехи поровну, но для мартышки в этот раз лишнего ореха не осталось. Каким могло быть наименьшее число орехов в собранной куче?
Как будет выглядеть формула n-го члена для рекуррентной последовательности k-го порядка, если
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 100]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке