Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Построить прямоугольный треугольник по двум медианам, проведённым к катетам.

Вниз   Решение


a, b, c ≥ 0.  Докажите, что  2(a³ + b³ + c³) ≥ a²b + ab² + a²c + ac² + b²c + bc².

ВверхВниз   Решение


Верно ли, что из любых 10 отрезков найдутся три, из которых можно составить треугольник?

ВверхВниз   Решение


В равнобедренном треугольнике $ABC$ ($AB=AC$) проведена высота $AA_0$. Окружность $\gamma$ с центром в середине $AA_0$ касается прямых $AB$ и $AC$. Из точки $X$ прямой $BC$ проведены две касательные к $\gamma$. Докажите, что эти касательные высекают на прямых $AB$ и $AC$ равные отрезки.

ВверхВниз   Решение


Докажите, что при любом x выполняется неравенство  x(x + 1)(x + 2)(x + 3) ≥ –1.

ВверхВниз   Решение


Найдите наибольший общий делитель многочленов P(x), Q(x) и представьте его в виде  P(x)U(x) + Q(x)V(x):
  а)  P(x) = x4 + x³ – 3x² – 4x – 1,  Q(x) = x³ + x² – x – 1;
  б)  P(x) = 3x4 – 5x³ + 4x² – 2x + 1,  Q(x) = 3x³ – 2x² + x – 1.

ВверхВниз   Решение


Найти последнюю цифру числа  1·2 + 2·3 + ... + 999·1000.

ВверхВниз   Решение


Пусть  (P(x), Q(x)) = D(x).
Докажите, что существуют такие многочлены U(x) и V(x), что  degU (x) < deg Q(x),  deg V(x) < deg P(x)  и   P(x)U(x) + Q(x)V(x) = D(x).

ВверхВниз   Решение


Сколько цифр у числа 21000?

ВверхВниз   Решение


На сколько нулей оканчивается число  9999 + 1?

ВверхВниз   Решение


Сумма двух неотрицательных чисел равна 10. Какое максимальное и какое минимальное значение может принимать сумма их квадратов?

ВверхВниз   Решение


Автор: Фольклор

Докажите, что для произвольных a, b, с равенство     выполнено тогда и только тогда, когда выполнено равенство   .

ВверхВниз   Решение


Определим последовательности {xn} и {yn} при помощи условий:

xn = xn - 1 + 2yn - 1sin2$\displaystyle \alpha$,    yn = yn - 1 + 2xn - 1cos2$\displaystyle \alpha$;    x0 = 0, y0 = cos$\displaystyle \alpha$.

Найдите выражение для xn и yn через n и $ \alpha$.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 100]      



Задача 61478  (#11.051)

Темы:   [ Квадратные корни (прочее) ]
[ Линейные рекуррентные соотношения ]
Сложность: 5
Классы: 10,11

Докажите, что при всех натуральных n выполняется сравнение [(1 + $ \sqrt{2}$)n] $ \equiv$ n(mod 2).

Прислать комментарий     Решение

Задача 61479  (#11.052)

Тема:   [ Уравнения в целых числах ]
Сложность: 4+
Классы: 10,11

Докажите, что последовательность  an = 1 + 17n²  (n ≥ 0)  содержит бесконечно много квадратов целых чисел.

Прислать комментарий     Решение

Задача 61480  (#11.053)

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 4+
Классы: 9,10,11

Определим последовательности {xn} и {yn} при помощи условий:

xn = xn - 1 + 2yn - 1sin2$\displaystyle \alpha$,    yn = yn - 1 + 2xn - 1cos2$\displaystyle \alpha$;    x0 = 0, y0 = cos$\displaystyle \alpha$.

Найдите выражение для xn и yn через n и $ \alpha$.

Прислать комментарий     Решение

Задача 61481  (#11.054)

Темы:   [ Текстовые задачи (прочее) ]
[ Итерации ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 9,10,11

Пять моряков высадились на остров и к вечеру набрали кучу кокосовых орехов. Дележ отложили на утро. Один из них, проснувшись ночью, угостил одним орехом мартышку, а из остальных орехов взял себе точно пятую часть, после чего лёг спать и быстро уснул. За ночь так же поступили один за другим и остальные моряки; при этом каждый не знал о действиях предшественников. На утро они поделили оставшиеся орехи поровну, но для мартышки в этот раз лишнего ореха не осталось. Каким могло быть наименьшее число орехов в собранной куче?

Прислать комментарий     Решение

Задача 61482  (#11.055)

Темы:   [ Линейные рекуррентные соотношения ]
[ Многочлены (прочее) ]
Сложность: 5
Классы: 10,11

Как будет выглядеть формула n-го члена для рекуррентной последовательности k-го порядка, если
  a) характеристическое уравнение имеет простые корни  x1,..., xk,  отличные от нуля;
  б) характеристическое уравнение имеет отличные от нуля корни  x1, ..., xm  с кратностями  α1, ..., αm  соответственно?
Определения, связанные с рекуррентными последовательностями, смотри в справочнике.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .