Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

Пять отрезков провели (не отрывая карандаша от бумаги) так, что получилась пятиугольная звезда, разделённая проведёнными отрезками на пять треугольников и пятиугольник. Оказалось, что все пять треугольников равны. Обязательно ли пятиугольник правильный?

Вниз   Решение


Найдите все пары целых чисел  (x, y),  для которых числа  x³ + y  и  x + y³  делятся на  x² + y².

ВверхВниз   Решение


Натуральные числа a, b, c, d попарно взаимно просты и удовлетворяют равенству  ab + cd = ac – 10bd.
Докажите, что среди них найдутся три числа, одно из которых равно сумме двух других.

ВверхВниз   Решение


В окружность вписан 101-угольник. Из каждой его вершины опустили перпендикуляр на прямую, содержащую противоположную сторону.
Докажите, что хотя бы у одного из перпендикуляров основание попадёт на сторону (а не на её продолжение).

ВверхВниз   Решение


Даны две бесконечные прогрессии: арифметическая a1, a2, a3, ... и геометрическая b1, b2, b3, ..., причём все числа, которые встречаются среди членов геометрической прогрессии, встречаются также и среди членов арифметической прогрессии. Докажите, что знаменатель геометрической прогрессии – целое число.

ВверхВниз   Решение


На доске написано несколько целых положительных чисел: a0, a1, a2, ... , an. Пишем на другой доске следующие числа: b0 – сколько всего чисел на первой доске, b1 – сколько там чисел, больших единицы, b2 – сколько чисел, больших двойки, и т.д., пока получаются положительные числа. На этом заканчиваем – нули не пишем. На третьей доске пишем числа c0, c1, c2, ... , построенные по числам второй доски по тому же правилу, по которому числа b0, b1, b2, ... строились по числам первой доски. Докажите, что наборы чисел на первой и третьей досках совпадают.

ВверхВниз   Решение


Даны две концентрические окружности $\Omega$ и $\omega$. Хорда $AD$ окружности $\Omega$ касается $\omega$. Внутри меньшего сегмента $AD$ круга с границей $\Omega$ взята произвольная точка $P$. Касательные из $P$ к окружности $\omega$ пересекают большую дугу AD окружности $\Omega$ в точках $B$ и $C$. Отрезки $BD$ и $AC$ пересекаются в точке $Q$. Докажите, что отрезок $PQ$ делит отрезок $AD$ на две равные части.

ВверхВниз   Решение


В кабинете сидят N нерях, у каждого на его столе скопилось ненулевое количество мусора. Неряхи выходят обедать по одному (после возвращения предыдущего), а в это время каждый из остальных перекладывает половину мусора со своего стола на стол вышедшего. Может ли случиться, что после того, как все пообедали, количество мусора на столах ни у кого не изменится, если а) N = 2; б) N = 10?

ВверхВниз   Решение


На доске написаны два 2007-значных числа. Известно, что из обоих чисел можно вычеркнуть по семь цифр так, чтобы получились одинаковые числа. Докажите, что в исходные числа можно вписать по семь цифр так, чтобы тоже получились одинаковые числа.

ВверхВниз   Решение


Последовательность нулей и единиц строится следующим образом: на k-м месте ставится ноль, если сумма цифр числа k чётна, и единица, если сумма цифр числа k нечётна. Докажите, что эта последовательность непериодична.

ВверхВниз   Решение


На шахматной доске стоят восемь не бьющих друг друга ладей. Докажите, что можно каждую из них передвинуть ходом коня так, что они по-прежнему не будут бить друг друга. (Все восемь ладей передвигаются "одновременно", то есть если, например, две ладьи бьют друг друга ходом коня, то их можно поменять местами.)

ВверхВниз   Решение


Автор: Марачёв А.

Из кубиков 1×1×1 склеен куб 3×3×3. Какое наибольшее количество кубиков можно из него выкинуть, чтобы осталась фигура с такими двумя свойствами:
  - со стороны каждой грани исходного куба фигура выглядит как квадрат 3×3 (глядя перпендикулярно этой грани, мы не увидим просвета – видны 9 кубиков фигуры);
  - переходя в фигуре от кубика к кубику через их общую грань, можно от каждого кубика добраться до любого другого?

ВверхВниз   Решение


Даны три ненулевых действительных числа. Если поставить их в любом порядке в качестве коэффициентов квадратного трёхчлена, то трёхчлен будет иметь действительный корень. Верно ли, что каждый из этих трёхчленов будет иметь положительный корень?

ВверхВниз   Решение


В бесконечной арифметической прогрессии, где все числа натуральные, нашлись два числа с одинаковой суммой цифр. Обязательно ли в ней найдётся ещё одно число с такой же суммой цифр?

ВверхВниз   Решение


Даны две последовательности из букв А и Б, в каждой из которых по 100 букв. За одну операцию разрешается вставить в какое-то место последовательности (возможно, в начало или в конец) одну или несколько одинаковых букв или убрать из последовательности одну или несколько подряд идущих одинаковых букв. Докажите, что из первой последовательности можно получить вторую не более чем за 100 операций.

ВверхВниз   Решение


Шайка разбойников отобрала у купца мешок монет. Каждая монета стоит целое число грошей. Оказалось, что какую бы монету ни отложить, оставшиеся монеты можно разделить между разбойниками так, чтобы каждый получил одинаковую сумму в грошах. Докажите, что если отложить одну монету, то число монет разделится на число разбойников.

ВверхВниз   Решение


Автор: Гришин А.

Имеется 20 бусинок десяти цветов, по две бусинки каждого цвета. Их как-то разложили в 10 коробок. Известно, что можно выбрать по бусинке из каждой коробки так, что все цвета будут представлены. Докажите, что число способов такого выбора есть ненулевая степень двойки.

ВверхВниз   Решение


В треугольнике ABC угол C прямой. На катете CB как на диаметре во внешнюю сторону построена полуокружность, точка N – середина этой полуокружности. Докажите, что прямая AN делит пополам биссектрису CL.

ВверхВниз   Решение


Число    представили в виде несократимой дроби.
Докажите, что если  3n + 1  – простое число, то числитель получившейся дроби делится на  3n + 1.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]      



Задача 64452

Темы:   [ Вписанные и описанные многоугольники ]
[ Четность и нечетность ]
[ Соображения непрерывности ]
Сложность: 4
Классы: 8,9,10

В окружность вписан 101-угольник. Из каждой его вершины опустили перпендикуляр на прямую, содержащую противоположную сторону.
Докажите, что хотя бы у одного из перпендикуляров основание попадёт на сторону (а не на её продолжение).

Прислать комментарий     Решение

Задача 64453

Темы:   [ Обыкновенные дроби ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Простые числа и их свойства ]
Сложность: 4
Классы: 8,9,10

Число    представили в виде несократимой дроби.
Докажите, что если  3n + 1  – простое число, то числитель получившейся дроби делится на  3n + 1.

Прислать комментарий     Решение

Задача 64654

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4
Классы: 8,9

Царь вызвал двух мудрецов. Он дал первому 100 пустых карточек и приказал написать на каждой по натуральному числу (числа не обязательно разные), не показывая их второму. Затем первый может сообщить второму несколько различных чисел, каждое из которых либо записано на какой-то карточке, либо равно сумме чисел на каких-то карточках (не уточняя, как именно каждое число получено). Второй должен определить, какие 100 чисел написаны на карточках. Если он этого не сможет, обоим отрубят головы; иначе из бороды каждого вырвут столько волосков, сколько чисел сообщил первый второму. Как мудрецам, не сговариваясь, остаться в живых и потерять минимальное количество волосков?

Прислать комментарий     Решение


Задача 64659

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Соображения непрерывности ]
[ Формула Герона ]
[ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 10,11

Верно ли, что любой выпуклый многоугольник можно по прямой разрезать на два меньших многоугольника с равными периметрами и
  а) равными наибольшими сторонами?
  б) равными наименьшими сторонами?

Прислать комментарий     Решение

Задача 64660

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4
Классы: 10,11

Царь вызвал двух мудрецов. Он дал первому 100 пустых карточек и приказал написать на каждой по положительному числу (числа не обязательно разные), не показывая их второму. Затем первый может сообщить второму несколько различных чисел, каждое из которых либо записано на какой-то карточке, либо равно сумме чисел на каких-то карточках (не уточняя, как именно каждое число получено). Второй должен определить, какие 100 чисел написаны на карточках. Если он этого не сможет, обоим отрубят головы; иначе из бороды каждого вырвут столько волосков, сколько чисел сообщил первый второму. Как мудрецам, не сговариваясь, остаться в живых и потерять минимальное количество волосков?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .