ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Рассматривается последовательность квадратов на плоскости. Первые два квадрата со стороной 1 расположены рядом (второй правее) и имеют одну общую вертикальную сторону. Нижняя сторона третьего квадрата со стороной 2 содержит верхние стороны первых двух квадратов. Правая сторона четвёртого квадрата со стороной 3 содержит левые стороны первого и третьего квадратов. Верхняя сторона пятого квадрата со стороной 5 содержит нижние стороны первого, второго и четвертого квадратов. Далее двигаемся по спирали бесконечно, обходя рассмотренные квадраты против часовой стрелки так, что сторона нового квадрата составлена из сторон трёх ранее рассмотренных. Докажите, что центры всех этих квадратов принадлежат двум прямым.
В стране больше 101 города. Столица соединена авиалиниями со 100 городами, а каждый город, кроме столицы, соединён авиалиниями ровно с десятью городами (если A соединён с B, то B соединён с A). Известно, что из каждого города можно попасть в любой другой (может быть, с пересадками). Доказать, что можно закрыть половину авиалиний, идущих из столицы, так, что возможность попасть из каждого города в любой другой сохранится. a, b, c – натуральные числа, НОД(a, b, c) = 1 и Окружность разбита на семь дуг так, что сумма каждых двух соседних дуг не
превышает 103°.
Из одинаковых неравнобедренных прямоугольных треугольников составили прямоугольник (без дырок и наложений). Натуральное число увеличили на 10% и снова получили натуральное число. Могла ли при этом сумма цифр уменьшиться ровно на 10%? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]
Натуральное число увеличили на 10% и снова получили натуральное число. Могла ли при этом сумма цифр уменьшиться ровно на 10%?
На плоскости даны несколько точек, никакие три из которых не лежат на одной прямой. Некоторые точки соединены отрезками. Известно, что любая прямая, не проходящая через данные точки, пересекает чётное число отрезков. Докажите, что из каждой точки выходит чётное число отрезков.
В ряд выписаны несколько нулей и единиц. Рассмотрим пары цифр в этом ряду (не только соседних), где левая цифра равна 1, а правая 0. Пусть среди этих пар ровно M таких, что между единицей и нулем этой пары стоит чётное число цифр, и ровно N таких, что между единицей и нулем этой пары стоит нечётное число цифр. Докажите, что M ≥ N.
Вася и Петя играют в следующую игру. На доске написаны два числа: 1/2009 и 1/2008. На каждом ходу Вася называет любое число x, а Петя увеличивает одно из чисел на доске (какое захочет) на x. Вася выигрывает, если в какой-то момент одно из чисел на доске станет равным 1. Сможет ли Вася выиграть, как бы ни действовал Петя?
В окружность радиуса 2 вписан остроугольный треугольник A1A2A3. Докажите, что на дугах A1A2, A2A3, A3A1 можно отметить по одной точке (B1, B2, B3 соответственно) так, чтобы площадь шестиугольника A1B1A2B2A3B3 численно равнялась периметру треугольника A1A2A3.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке