ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Незнайка хвастается, что написал в ряд несколько единиц, поставил между каждыми соседними единицами знак "+" или "×", расставил скобки и получил выражение, значение которого равно 2014; более того, если в этом выражении заменить одновременно все знаки "+" на знаки "×", а знаки "×" на знаки "+", все равно получится 2014. Может ли он быть прав?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 64658  (#1)

Темы:   [ Арифметические действия. Числовые тождества ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 10,11

Незнайка хвастается, что написал в ряд несколько единиц, поставил между каждыми соседними единицами знак "+" или "×", расставил скобки и получил выражение, значение которого равно 2014; более того, если в этом выражении заменить одновременно все знаки "+" на знаки "×", а знаки "×" на знаки "+", все равно получится 2014. Может ли он быть прав?

Прислать комментарий     Решение

Задача 64659  (#2)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Соображения непрерывности ]
[ Формула Герона ]
[ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 10,11

Верно ли, что любой выпуклый многоугольник можно по прямой разрезать на два меньших многоугольника с равными периметрами и
  а) равными наибольшими сторонами?
  б) равными наименьшими сторонами?

Прислать комментарий     Решение

Задача 64660  (#3)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4
Классы: 10,11

Царь вызвал двух мудрецов. Он дал первому 100 пустых карточек и приказал написать на каждой по положительному числу (числа не обязательно разные), не показывая их второму. Затем первый может сообщить второму несколько различных чисел, каждое из которых либо записано на какой-то карточке, либо равно сумме чисел на каких-то карточках (не уточняя, как именно каждое число получено). Второй должен определить, какие 100 чисел написаны на карточках. Если он этого не сможет, обоим отрубят головы; иначе из бороды каждого вырвут столько волосков, сколько чисел сообщил первый второму. Как мудрецам, не сговариваясь, остаться в живых и потерять минимальное количество волосков?

Прислать комментарий     Решение

Задача 64661  (#4)

Темы:   [ Теорема Безу. Разложение на множители ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Автор: Жуков Г.

Дан многочлен двадцатой степени с целыми коэффициентами. На плоскости отметили все точки с целыми координатами, у которых ординаты не меньше 0 и не больше 10. Какое наибольшее число отмеченных точек может лежать на графике этого многочлена?

Прислать комментарий     Решение

Задача 64723  (#5)

Темы:   [ Теория игр (прочее) ]
[ Признаки подобия ]
[ Вспомогательные подобные треугольники ]
[ Симметрия помогает решить задачу ]
[ Вписанные и описанные многоугольники ]
[ Комплексные числа в геометрии ]
[ Оценка + пример ]
Сложность: 4+
Классы: 9,10,11

Автор: Кноп К.А.

Дан треугольник, у которого нет равных углов. Петя и Вася играют в такую игру: за один ход Петя отмечает точку на плоскости, а Вася красит её по своему выбору в красный или синий цвет. Петя выиграет, если какие-то три из отмеченных им и покрашенных Васей точек образуют одноцветный треугольник, подобный исходному. За какое наименьшее число ходов Петя сможет гарантированно выиграть (каков бы ни был исходный треугольник)?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .