Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Через точку O пересечения медиан треугольника ABC проведена прямая, пересекающая его стороны в точках M и N. Докажите, что  NO $ \leq$ 2MO.

Вниз   Решение


Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой вырезаны
  а) клеточки b3 и e7;
  б) два противоположных угловых поля (a1 и h8)?

ВверхВниз   Решение


На сторонах AB, BC, CD и DA выпуклого четырёхугольника ABCD взяты соответственно точки P, Q, R и Sб  O – точка пересечения отрезков PR и QS.
Докажите,что если  AP : AB = DR : DC  и  AS : AD = BQ : BC,  то и  SO : SQ = AP : ABPQ : PR = AS : ;AD.

ВверхВниз   Решение


Докажите неравенство: |x1 + ... + xn| ≤ |x1| + ... + |xn|, где x1,..., xn — произвольные числа.

ВверхВниз   Решение


Пусть X – такая точка внутри треугольника ABC, что  XA·BC = XB·AC = XC·ABI1, I2, I3 – центры вписанных окружностей треугольников XBC, XCA и XAB соответственно. Докажите, что прямые AI1, BI2 и CI3 пересекаются в одной точке.

ВверхВниз   Решение


11 пионеров занимаются в пяти кружках дома культуры. Докажите, что найдутся два пионера А и В такие, что все кружки, которые посещает А, посещает и В.

ВверхВниз   Решение


Дан треугольник ABC площади 1. Из вершины B опущен перпендикуляр BM на биссектрису угла C. Найдите площадь треугольника AMC.

ВверхВниз   Решение


Дано 11 различных натуральных чисел, не больших 20. Докажите, что из них можно выбрать два числа, одно из которых делится на другое.

ВверхВниз   Решение


Прямая, проходящая через вершину B треугольника ABC, пересекает сторону AC в точке K, а описанную окружность в точке M.
Найдите геометрическое место центров описанных окружностей треугольников AMK.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49]      



Задача 64704  (#8.6)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Поворот помогает решить задачу ]
[ Вписанные четырехугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

Точки E, F – середины сторон BC, CD квадрата ABCD. Прямые AE и BF пересекаются в точке P. Докажите, что  ∠PDA = ∠AED.

Прислать комментарий     Решение

Задача 64739  (#9.6)

Темы:   [ ГМТ - прямая или отрезок ]
[ Вписанный угол равен половине центрального ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3+
Классы: 8,9,10

Прямая, проходящая через вершину B треугольника ABC, пересекает сторону AC в точке K, а описанную окружность в точке M.
Найдите геометрическое место центров описанных окружностей треугольников AMK.

Прислать комментарий     Решение

Задача 64747  (#10.6)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Связь величины угла с длиной дуги и хорды ]
[ Гомотетия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 10,11

Автор: Нилов Ф.

Вписанная окружность треугольника ABC касается его сторон в точках A', B' и C'. Известно, что ортоцентры треугольников ABC и A'B'C' совпадают. Верно ли, что треугольник ABC – правильный?

Прислать комментарий     Решение

Задача 65007  (#6)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
[ Пересекающиеся окружности ]
[ Симметрия помогает решить задачу ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9

На стороне BC равностороннего треугольника ABC взяты такие точки M и N (M лежит между B и N) , что  ∠MAN = 30°.  Описанные окружности треугольников AMC и ANB пересекаются в точке K. Докажите, что прямая AK содержит центр описанной окружности треугольника AMN.

Прислать комментарий     Решение

Задача 64705  (#8.7)

Темы:   [ Правильные многоугольники ]
[ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9

Каждый из двух правильных многоугольников P и Q разрезали прямой на две части. Одну из частей P и одну из частей Q сложили друг с другом по линии разреза. Может ли получиться правильный многоугольник, не равный ни одному из исходных, и если да, то сколько у него может быть сторон?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .