Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Петя и Вася играют в игру. Для каждых пяти различных переменных из набора $x_{1}, ..., x_{10}$ имеется единственная карточка, на которой записано их произведение. Петя и Вася по очереди берут по карточке, начинает Петя. По правилам игры, когда все карточки разобраны, Вася присваивает переменным значения как хочет, но так, что  $0 \leqslant x_{1} \leqslant ... \leqslant x_{10}$.  Может ли Вася гарантированно добиться того, чтобы сумма произведений на его карточках была больше, чем у Пети?

Вниз   Решение


Координаты вершин треугольника рациональны. Докажите, что координаты центра его описанной окружности также рациональны.

ВверхВниз   Решение


Автор: Фольклор

Четыре одинаковых кубика расположили на столе так, как показано на рисунке. Одна из граней каждого кубика покрашена в чёрный цвет. За один шаг разрешается повернуть одинаковым образом оба кубика из одного ряда (вертикального или горизонтального). Докажите, что, независимо от начального расположения чёрных граней, за несколько таких шагов можно расположить кубики чёрными гранями вверх.

ВверхВниз   Решение


На плоскости лежат три шайбы A, B и C. Хоккеист бьёт по одной из шайб так, чтобы она прошла между двумя другими и остановилась в некоторой точке. Могут ли все шайбы вернуться на свои места после25 ударов?

ВверхВниз   Решение


Вдоль улицы стоят шесть деревьев, и на каждом из них сидит по вороне. Раз в час две из них взлетают, и каждая садится на одно из соседних деревьев. Может ли получиться так, что все вороны соберутся на одном дереве?

ВверхВниз   Решение


Пусть  $ \alpha$ = $ \pi$/7. Докажите, что  $ {\frac{1}{\sin\alpha }}$ = $ {\frac{1}{\sin 2\alpha }}$ + $ {\frac{1}{\sin
3\alpha }}$.

ВверхВниз   Решение


В соревнованиях участвуют 10 фигуристов. Соревнования судят трое судей следующим способом: каждый судья по-своему распределяет между фигуристами места (с первого по десятое), после чего победителем считается фигурист с наименьшей суммой мест. Какое наибольшее значение может принимать эта сумма у победителя (победитель единственный)?

ВверхВниз   Решение


В неравнобедренном треугольнике ABC биссектрисы углов A и B обратно пропорциональны противолежащим сторонам. Найдите угол C.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 64908  (#6)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Симметрия помогает решить задачу ]
[ Композиции симметрий ]
[ Углы между биссектрисами ]
Сложность: 4-
Классы: 8,9

На гипотенузе AC прямоугольного треугольника ABC отметили точку такую C1, что  BC = CC1.  Затем на катете AB отметили такую точку C2, что
AC2 = AC1;  аналогично определяется точка A2. Найдите угол AMC, где M – середина отрезка A2C2.

Прислать комментарий     Решение

Задача 64909  (#7)

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3+
Классы: 8,9

В неравнобедренном треугольнике ABC биссектрисы углов A и B обратно пропорциональны противолежащим сторонам. Найдите угол C.

Прислать комментарий     Решение

Задача 64910  (#8)

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 4-
Классы: 8,9

Пусть BM – медиана прямоугольного треугольника ABC  (∠B = 90°).  Окружность, вписанная в треугольник ABM, касается сторон AB, AM в точках A1, A2; аналогично определяются точки C1, C2. Докажите, что прямые A1A2 и C1C2 пересекаются на биссектрисе угла ABC.

Прислать комментарий     Решение

Задача 64911  (#9)

Темы:   [ Треугольник (построения) ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 3+
Классы: 8,9

Восстановите треугольник ABC по прямым lb и lc, содержащим биссектрисы углов B и C, и основанию биссектрисы угла A – точке L1.

Прислать комментарий     Решение

Задача 64912  (#10)

Темы:   [ Четырехугольник (неравенства) ]
[ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Малые шевеления ]
Сложность: 4
Классы: 8,9,10,11

В выпуклом четырёхугольнике все стороны и все углы попарно различны.
  а) Может ли наибольший угол примыкать к наибольшей стороне, и при этом наименьший – к наименьшей?
  б) Может ли наибольший угол не примыкать к наименьшей стороне, и при этом наименьший не примыкать к наибольшей?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .