ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?
Теорема косинусов для тетраэдра.}Квадрат площади
каждой грани тетраэдра равен сумме квадратов площадей трёх остальных
граней без удвоенных попарных произведений площадей этих граней на
косинусы двугранных углов между ними, т.е.
Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел? Год проведения нынешнего математического праздника делится на его номер: 2006 : 17 = 118. Что больше: 20112011 + 20092009 или 20112009 + 20092011? Натуральные числа d и d' > d – делители натурального числа n. Докажите, что d' > d + d²/n. На доске написаны несколько чисел. Известно, что квадрат каждого записанного числа больше произведения любых двух других записанных чисел. Какое наибольшее количество чисел может быть на доске? Среди комплексных чисел p , удовлетворяющих условию |p – 25i| ≤ 15, найти число с наименьшим аргументом. Найдите наибольшее значение выражения х + у, если Докажите, что В выпуклом четырёхугольнике ABCD углы B и D равны, CD = 4BC, а биссектриса угла A проходит через середину стороны CD. |
Страница: << 1 2 3 4 >> [Всего задач: 16]
В четырёхугольнике ABCD сторона AB равна диагонали AC и перпендикулярна стороне AD, а диагональ AC перпендикулярна стороне CD. На стороне AD взята такая точка K , что AC = AK. Биссектриса угла ADC пересекает BK в точке M. Найдите угол ACM.
На полке в произвольном порядке стоят десять томов энциклопедии, пронумерованных от 1 до 10. Разрешается менять местами любые два тома, между которыми стоит не меньше четырёх других томов. Всегда ли можно расставить все тома по возрастанию номеров?
В выпуклом четырёхугольнике ABCD углы B и D равны, CD = 4BC, а биссектриса угла A проходит через середину стороны CD.
Докажите, что для произвольных a, b, с равенство
В вершинах куба расставили числа 1², 2², ..., 8² (в каждую из вершин – по одному числу). Для каждого ребра посчитали произведение чисел в его концах. Найдите наибольшую возможную сумму всех этих произведений.
Страница: << 1 2 3 4 >> [Всего задач: 16]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке