ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи С помощью циркуля и линейки постройте квадрат, три вершины которого лежали бы на трёх данных параллельных прямых. В трапеции ABCD биссектрисы углов A и D пересекаются в точке E, лежащей на боковой стороне BC. Эти биссектрисы разбивают трапецию на три треугольника, в которые вписали окружности. Одна из этих окружностей касается основания AB в точке K, а две другие касаются биссектрисы DE в точках M и N. Докажите, что BK = MN. |
Страница: << 1 2 3 >> [Всего задач: 12]
В трапеции ABCD биссектрисы углов A и D пересекаются в точке E, лежащей на боковой стороне BC. Эти биссектрисы разбивают трапецию на три треугольника, в которые вписали окружности. Одна из этих окружностей касается основания AB в точке K, а две другие касаются биссектрисы DE в точках M и N. Докажите, что BK = MN.
На стороне BE правильного треугольника ABE вне его построен ромб BCDE. Отрезки AC и BD пересекаются в точке F. Докажите, что AF < BD.
O – точка пересечения диагоналей трапеции ABCD. Прямая, проходящая через C и точку, симметричную B относительно O, пересекает основание AD в точке K. Докажите, что SAOK = SAOB + SDOK.
В треугольнике ABC M – середина стороны BC, P – точка пересечения касательных в точках B и C к описанной окружности, N – середина отрезка MP. Отрезок AN пересекает описанную окружность в точке Q. Докажите, что ∠PMQ = ∠MAQ.
В остроугольном неравнобедренном треугольнике ABC проведена высота AH. На сторонах AC и AB отмечены точки B1 и C1 соответственно, так, что HA – биссектриса угла B1HC1 и четырёхугольник BC1B1C – вписанный. Докажите, что B1 и C1 – основания высот треугольника ABC.
Страница: << 1 2 3 >> [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке