Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В ряд выписаны действительные числа a1, a2, a3, ..., a1996. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001.

Вниз   Решение


На каждой клетке доски 10×10 стоит фишка. Разрешается выбрать диагональ, на которой стоит чётное число фишек, и снять с неё любую фишку.
Какое наибольшее число фишек можно убрать с доски такими операциями?

ВверхВниз   Решение


По доске n×n прошла ладья, побывав в каждой клетке один раз, причем каждый её ход был ровно на одну клетку. Клетки занумерованы от 1 до n2 в порядке прохождения ладьи. Пусть M – максимальная разность между номерами соседних (по стороне) клеток. Каково наименьшее возможное значение M?

ВверхВниз   Решение


Автор: Фольклор

Два десятизначных числа назовем соседними, если они различаются только одной цифрой в каком-то из разрядов (например, 1234567890 и 1234507890 соседние). Какое наибольшее количество десятизначных чисел можно выписать так, чтобы среди них не было соседних?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



Задача 65394

Темы:   [ Прямоугольные параллелепипеды ]
[ Примеры и контрпримеры. Конструкции ]
[ Развертка помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9,10,11

Дана коробка (прямоугольный параллелепипед), по поверхности (но не внутри) которой ползает муравей. Изначально муравей сидит в углу. Верно ли, что среди всех точек поверхности на наибольшем расстоянии от муравья находится противоположный угол? (Расстоянием между двумя точками считаем длину соединяющего их кратчайшего пути по поверхности параллелепипеда.)

Прислать комментарий     Решение

Задача 65400

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Какое наименьшее число клеток надо отметить на доске 15×15 так, чтобы слон с любой клетки доски бил не менее двух отмеченных клеток? (Слон бьёт и ту клетку, где стоит.)

Прислать комментарий     Решение

Задача 65403

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 4-
Классы: 8,9,10,11

К натуральному числу  a > 1  приписали это же число и получили число b, кратное a². Найдите все возможные значения числа  b/a².

Прислать комментарий     Решение

Задача 65404

Темы:   [ Десятичная система счисления ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Фольклор

Два десятизначных числа назовем соседними, если они различаются только одной цифрой в каком-то из разрядов (например, 1234567890 и 1234507890 соседние). Какое наибольшее количество десятизначных чисел можно выписать так, чтобы среди них не было соседних?

Прислать комментарий     Решение

Задача 65407

Темы:   [ Соображения непрерывности ]
[ Разложение на множители ]
[ Обыкновенные дроби ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Известно, что среди членов некоторой арифметической прогрессии a1, a2, a3, a4, ... есть числа  
Докажите,что эта прогрессия состоит из целых чисел.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .