Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

На длинной скамейке сидели мальчик и девочка. Затем по одному пришли ещё 20 детей, и каждый садился между какими-то двумя уже сидящими. Назовём девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика – отважным, если он садился между двумя соседними девочками. В итоге оказалось, что мальчики и девочки на скамейке чередуются. Можно ли наверняка сказать, сколько отважных среди детей на скамейке?

Вниз   Решение


Построить такой равнобедренный треугольник, чтобы периметр всякого вписанного в него прямоугольника (две вершины которого лежат на основании треугольника) был постоянный.

ВверхВниз   Решение


Плоский угол при вершине правильной шестиугольной пирамиды равен ϕ . Найдите угол боковой грани с плоскостью основания пирамиды.

ВверхВниз   Решение


На отрезке  [0, 1]  отмечено несколько различных точек. При этом каждая отмеченная точка расположена либо ровно посередине между двумя другими отмеченными точками (не обязательно соседними с ней), либо ровно посередине между отмеченной точкой и концом отрезка. Докажите, что все отмеченные точки рациональны.

ВверхВниз   Решение


а) Докажите, что число точек пересечения двух замкнутых ломаных на плоскости, находящихся в общем положении, чётно.
б) Верно ли это для замкнутых ломаных, нарисованных на поверхности оконной рамы?

ВверхВниз   Решение


Вписанная окружность треугольника ABC касается сторон AB и AC в точках P и Q соответственно. Пусть RS – средняя линия треугольника, параллельная AB, T – точка пересечения прямых PQ и RS. Докажите, что T лежит на биссектрисе угла B треугольника.

ВверхВниз   Решение


Автор: Садыков Р.

В ячейки куба 11×11×11 поставлены по одному числа 1, 2, ..., 1331. Из одного углового кубика в противоположный угловой отправляются два червяка. Каждый из них может проползать в соседний по грани кубик, при этом первый может проползать, если число в соседнем кубике отличается на 8, второй – если отличается на 9. Существует ли такая расстановка чисел, что оба червяка смогут добраться до противоположного углового кубика?

ВверхВниз   Решение


Плоскость разбита на выпуклые семиугольники единичного диаметра. Докажите, что любой круг радиуса 200 пересекает не менее миллиарда из них.

ВверхВниз   Решение


На основании BC трапеции ABCD взята точка E, лежащая на одной окружности с точками A, C и D. Другая окружность, проходящая через точки A, B и C, касается прямой CD. Найдите BC, если  AB = 12  и  BE : EC = 4 : 5.  Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.

ВверхВниз   Решение


У нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берёт себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Докажите, что все овцы собрались у одного крестьянина.

ВверхВниз   Решение


На сторонах $AB,BC,CA$ треугольника $ABC$ выбраны точки $C_1,A_1,B_1$ так, что отрезки $AA_1,BB_1,CC_1$ пересекаются в одной точке. Лучи $B_1A_1$ и $B_1C1$ пересекают описанную окружность в точках $A_2$ и $C_2$. Докажите, что точки $A,C,$ точка пересечения $A_2C_2$ с $BB_1$ и середина $A_2C_2$ лежат на одной окружности.

ВверхВниз   Решение


В 12 часов дня "Запорожец" и "Москвич" находились на расстоянии 90 км и начали двигаться навстречу друг другу с постоянной скоростью. Через два часа они снова оказались на расстоянии 90 км. Незнайка утверждает, что "Запорожец" до встречи с "Москвичом" и "Москвич" после встречи с "Запорожцем" проехали в сумме 60 км. Докажите, что он неправ.

ВверхВниз   Решение


В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Могут ли они вращаться?

ВверхВниз   Решение


Дан правильный треугольник ABC. На продолжении стороны AC за точку C взята точка D, а на продолжении стороны BC за точку C – точка E, причём
BD = DE.  Докажите, что  AD = CE.

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

Пусть $M$ – середина гипотенузы $AB$ прямоугольного треугольника $ABC$. Окружность, проходящая через $C$ и $M$, пересекает прямые $BC$ и $AC$ в точках $P$ и $Q$ соответственно. Пусть $c_1, c_2$ – окружности с центрами $P$, $Q$ и радиусами $BP$, $AQ$ соответственно. Докажите, что $c_1$, $c_2$ и описанная окружность треугольника $ABC$ проходят через одну точку.

ВверхВниз   Решение


Даны числа 1, 2, ..., N, каждое из которых окрашено либо в чёрный, либо в белый цвет. Разрешается перекрашивать в противоположный цвет любые три числа, одно из которых равно полусумме двух других. При каких N всегда можно сделать все числа белыми?

ВверхВниз   Решение


Даны точки A(- 2;1), B(2;5) и C(4; - 1). Точка D лежит на продолжении медианы AM за точку M, причём четырёхугольник ABDC — параллелограмм. Найдите координаты точки D.

ВверхВниз   Решение


Плоский угол при вершине правильной четырёхугольной пирамиды равен ϕ . Найдите угол между соседними боковыми гранями пирамиды.

ВверхВниз   Решение


Докажите, что числа от 1 до 15 нельзя разбить на две группы: A из двух чисел и B из 13 чисел так, чтобы сумма чисел в группе B была равна произведению чисел в группе A.

ВверхВниз   Решение


Каких точных квадратов, не превосходящих 1020, больше: тех, у которых семнадцатая с конца цифра – 7, или тех, у которых семнадцатая с конца цифра – 8?

ВверхВниз   Решение


На плоскости даны прямая $l$ и точка $A$ вне ее. Найдите геометрическое место инцентров остроугольных треугольников с вершиной $A$, у которых одна сторона лежит на прямой $l$.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



Задача 66662  (#21 [10-11 кл])

Тема:   [ ГМТ с ненулевой площадью ]
Сложность: 5
Классы: 10,11

На плоскости даны прямая $l$ и точка $A$ вне ее. Найдите геометрическое место инцентров остроугольных треугольников с вершиной $A$, у которых одна сторона лежит на прямой $l$.
Прислать комментарий     Решение


Задача 66663  (#22 [10-11 кл])

Тема:   [ Задачи на максимум и минимум (прочее) ]
Сложность: 5+
Классы: 10,11

Автор: Белухов Н.

Шесть кругов с радиусами, равными 1, расположены на плоскости так, что расстояние между центрами любых двух из них больше $d$. При каком наименьшем $d$ можно утверждать, что найдется прямая, не пересекающая ни одного из кругов, по каждую сторону от которой лежат три круга?
Прислать комментарий     Решение


Задача 66664  (#23 [10-11 кл])

Тема:   [ Разрезания, разбиения, покрытия и замощения ]
Сложность: 5
Классы: 10,11

Плоскость разбита на выпуклые семиугольники единичного диаметра. Докажите, что любой круг радиуса 200 пересекает не менее миллиарда из них.
Прислать комментарий     Решение


Задача 66665  (#24 [10-11 кл])

Темы:   [ Четырехугольная пирамида ]
[ Перпендикулярные прямые в пространстве ]
Сложность: 4+
Классы: 10,11

Автор: Солынин А.

Кристалл пирита представляет собой параллелепипед, на каждую грань которого нанесена штриховка.

На любых двух соседних гранях штриховка перпендикулярна. Существует ли выпуклый многогранник с числом граней, не равным $6$, грани которого можно заштриховать аналогичным образом?
Прислать комментарий     Решение

Задача 66666  (#8.1)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вспомогательные равные треугольники ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике $ABC$ ($\angle C=90^{\circ}$) вписанная окружность касается катета $BC$ в точке $K$. Докажите, что хорда вписанной окружности, высекаемая прямой $AK$ в два раза больше, чем расстояние от вершины $C$ до этой прямой.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .