ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Из цифр 1 и 2 составили пять n-значных чисел так, что у каждых двух чисел совпали цифры ровно в m разрядах, но ни в одном разряде не совпали все пять чисел. Докажите, что отношение m/n не меньше ⅖ и не больше ⅗. Доктор Айболит хочет навестить и корову, и волчицу, и жучка, и червячка. Все четверо живут вдоль одной прямой дороги. Орлы готовы утром доставить Айболита к первому пациенту, а вечером забрать от последнего, но три промежуточных перехода ему придётся сделать пешком. Если Айболит начнёт с коровы, то длина его кратчайшего маршрута составит 6 км, если с волчицы — 7 км, а если с жучка — 8 км. Нарисуйте, как могли располагаться домики коровы, волчицы, жучка и червячка (достаточно одного примера расположения). Биссектриса AD, медиана BM и высота CH остроугольного треугольника ABC пересекаются в одной точке. Докажите, что величина угла BAC Известно, что если у правильного N-угольника, находящегося внутри окружности, продлить все стороны до пересечения с этой окружностью, то 2N добавленных к сторонам отрезков можно разбить на две группы с одинаковой суммой длин. А верно ли аналогичное утверждение для находящегося внутри сферы а) произвольного куба; б) произвольного правильного тетраэдра? (Каждое ребро продлевают в обе стороны до пересечения со сферой. В итоге к каждому ребру добавляется по отрезку с обеих сторон. Требуется покрасить каждый из них либо в красный, либо в синий цвет, чтобы сумма длин красных отрезков была равна сумме длин синих.) Пусть AA1, BB1, CC1 – высоты треугольника ABC; A0, C0 – точки пересечения описанной окружности треугольника A1BC1 с прямыми A1B1 и C1B1 соответственно. Докажите, что прямые AA0 и CC0 пересекаются на медиане треугольника ABC или параллельны ей. |
Страница: 1 2 >> [Всего задач: 8]
В треугольнике ABC ∠A=45∘. Точка A′ диаметрально противоположна A на описанной окружности треугольника. Точки E, F на сторонах AB, AC соответственно таковы. что A′B=BE, A′C=CF. Пусть K – вторая точка пересечения окружностей AEF и ABC. Докажите, что прямая EF делит пополам отрезок A′K.
Пусть A1, B1, C1 – середины сторон BC, AC и AB треугольника ABC, K – основание высоты, проведенной из вершины A, а L – точка касания вписанной окружности γ со стороной BC. Описанные окружности треугольников LKB1 и A1LC1 вторично пересекают прямую B1C1 в точках X и Y соответственно. Окружность γ пересекает эту прямую в точках Z и T. Докажите, что XZ=YT.
Пусть точки P и Q изогонально сопряжены относительно треугольника ABC. Точка A1, лежащая на дуге BC описанной около треугольника окружности ω, удовлетворяет условию ∠BA1P=∠CA1Q. Точки B1 и C1 определены аналогично. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
Докажите, что сумма двух нагелиан больше полупериметра треугольника.
Пусть AA1, BB1, CC1 – высоты треугольника ABC; A0, C0 – точки пересечения описанной окружности треугольника A1BC1 с прямыми A1B1 и C1B1 соответственно. Докажите, что прямые AA0 и CC0 пересекаются на медиане треугольника ABC или параллельны ей.
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке