ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Выпуклый четырёхугольник $ABCD$ обладает таким свойством: ни из каких трёх его сторон нельзя сложить треугольник. Докажите, что а) один из углов этого четырёхугольника не больше $60^\circ$; б) один из углов этого четырёхугольника не меньше $120^\circ$. Решение |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]
Дано целое $n>2$. На сфере радиуса 1 требуется расположить $n$ попарно не пересекающихся дуг больших окружностей, все дуги равной длины $\alpha$. Докажите, что а) при любом $\alpha<\pi+\frac{2\pi}n$ это возможно; б) при любом $\alpha>\pi+\frac{2\pi}n$ это невозможно.
а) один из углов этого четырёхугольника не больше $60^\circ$; б) один из углов этого четырёхугольника не меньше $120^\circ$.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|