ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Военный полигон имеет форму N-угольника и обнесен по границе забором. Военные изобрели атомную бомбу очередного поколения и намереваются провести испытания этого нового вида оружия. Узнав о планах «зеленых» помешать испытаниям, главнокомандующий приказал установить сверхсовременный пеленгатор, обнаруживающий посторонних в радиусе его действия.

У военных есть вполне естественное желание взорвать как можно более мощную атомную бомбу. При этом заместитель командира части по тылу настаивает, что забор полигона должен остаться целым. Тот же самый рачительный зам. по тылу хочет сэкономить как можно больше денег на электроэнергии, установив пеленгатор минимального радиуса действия, контролирующий весь полигон. Чтобы его не украли «зеленые», пеленгатор нужно установить на территории полигона. Напишите программу, определяющую минимальный радиус действия и точку установки пеленгатора, а также максимальный радиус поражения бомбы и точку ее взрыва.

Входные данные

Входной файл содержит вещественные координаты вершин N-угольника (1 ≤ N ≤ 50), записанные в порядке обхода по (или против) часовой стрелки.

Выходные данные

Запишите в выходной файл искомые координаты и радиусы действия в соответствии с форматом, приведенным в примере.

Пример входного файла

0 0
10 0
10 10
0 10

Пример выходного файла

Установить пеленгатор в точке (5, 5) радиусом действия 7.0710678
Взорвать бомбу в точке (5, 5) радиусом действия 5.0000000

Вниз   Решение


Дан вписанный в окружность пятиугольник. Докажите, что отношение его площади к сумме диагоналей не превосходит четверти радиуса окружности.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 66973

Темы:   [ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9,10,11

Пусть $O$ – центр описанной окружности треугольника $ABC$. На стороне $BC$ нашлись точки $X$ и $Y$ такие, что $AX=BX$ и $AY=CY$. Докажите, что окружность, описанная около треугольника $AXY$, проходит через центры описанных окружностей треугольников $AOB$ и $AOC$.
Прислать комментарий     Решение


Задача 66969

Темы:   [ Теоремы Чевы и Менелая ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 8,9,10,11

Через точку внутри треугольника провели три чевианы. Оказалось, что длины шести отрезков, на которые они разбивают стороны треугольника, образуют в каком-то порядке геометрическую прогрессию. Докажите, что длины чевиан тоже образуют геометрическую прогрессию.
Прислать комментарий     Решение


Задача 66970

Темы:   [ Пятиугольники ]
[ Вписанные и описанные многоугольники ]
[ Площадь четырехугольника ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9,10,11

Дан вписанный в окружность пятиугольник. Докажите, что отношение его площади к сумме диагоналей не превосходит четверти радиуса окружности.
Прислать комментарий     Решение


Задача 66971

Темы:   [ Гомотетия помогает решить задачу ]
[ Точка Торричелли ]
Сложность: 4
Классы: 8,9,10

Внутри остроугольного неравнобедренного треугольника $ABC$ отмечена точка $T$, такая что $\angle ATB = \angle BTC = 120^\circ$. Окружность с центром $E$ проходит через середины сторон треугольника $ABC$. Оказалось, что точки $B,T,E$ лежат на одной прямой. Найдите угол $ABC$.
Прислать комментарий     Решение


Задача 66974

Темы:   [ Изогональное сопряжение ]
[ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
Сложность: 4
Классы: 9,10,11

Автор: Рябов П.

Диагонали трапеции $ABCD$ ($BC\parallel AD$) пересекаются в точке $O$. На отрезках $BC$ и $AD$ выбраны соответственно точки $M$ и $N$. К окружности $AMC$ проведена касательная из $C$ до пересечения с лучом $NB$ в точке $P$; к окружности $BND$ из $D$ проведена касательная до пересечения с лучом $MA$ в точке $R$. Докажите, что $\angle BOP=\angle AOR$.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .