Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Имеется куб размером 10×10×10, состоящий из маленьких единичных кубиков. В центре O одного из угловых кубиков сидит кузнечик. Он может прыгать в центр кубика, имеющего общую грань с тем, в котором кузнечик находится в данный момент; причём так, чтобы расстояние до точки O увеличивалось. Сколькими способами кузнечик может допрыгать до кубика, противоположного исходному?

Вниз   Решение


В графе все вершины имеют степень 3. Докажите, что в нём есть цикл.

ВверхВниз   Решение


Жили-были двадцать шпионов. Каждый из них написал донос на десять своих коллег.
Докажите, что не менее, чем десять пар шпионов донесли друг на друга.

ВверхВниз   Решение


Петя собирается все 90 дней каникул провести в деревне и при этом каждый второй день (то есть через день) ходить купаться на озеро, каждый третий – ездить в магазин за продуктами, а каждый пятый день – решать задачи по математике. (В первый день Петя сделал и первое, и второе, и третье и очень устал.) Сколько будет у Пети "приятных" дней, когда нужно будет купаться, но не нужно ни ездить в магазин, ни решать задачи? Сколько "скучных", когда совсем не будет никаких дел?

ВверхВниз   Решение


На столе лежат 8 всевозможных горизонтальных полосок $1\times3$ из трёх квадратиков $1\times1$, каждый из которых либо белый, либо серый (см. рисунок). Разрешается переносить полоски в любых направлениях на любые (не обязательно целые) расстояния, не поворачивая и не переворачивая. Можно ли расположить полоски на столе так, чтобы все белые точки образовали многоугольник, ограниченный замкнутой несамопересекающейся ломаной, и все серые – тоже? (Полоски не должны перекрываться.)

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 67048  (#1)

Тема:   [ Дроби (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

В ряд записаны  $n > 2$  различных ненулевых чисел, причём каждое следующее больше предыдущего на одну и ту же величину. Обратные к этим $n$ числам тоже удалось записать в ряд (возможно, в другом порядке) так, что каждое следующее больше предыдущего на одну и ту же величину (возможно, иную, чем в первом случае). Чему могло равняться $n$?

Прислать комментарий     Решение

Задача 67049  (#2)

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

На столе лежат 8 всевозможных горизонтальных полосок $1\times3$ из трёх квадратиков $1\times1$, каждый из которых либо белый, либо серый (см. рисунок). Разрешается переносить полоски в любых направлениях на любые (не обязательно целые) расстояния, не поворачивая и не переворачивая. Можно ли расположить полоски на столе так, чтобы все белые точки образовали многоугольник, ограниченный замкнутой несамопересекающейся ломаной, и все серые – тоже? (Полоски не должны перекрываться.)

Прислать комментарий     Решение

Задача 67050  (#3)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9,10,11

В прямоугольный треугольник с гипотенузой длины 1 вписали окружность. Через точки её касания с его катетами провели прямую.
Отрезок какой длины может высекать на этой прямой окружность, описанная около исходного треугольника?

Прислать комментарий     Решение

Задача 67051  (#4)

Темы:   [ Делимость чисел. Общие свойства ]
[ Теория игр (прочее) ]
Сложность: 4
Классы: 8,9,10,11

На доске написано число 7. Петя и Вася по очереди приписывают к текущему числу по одной цифре, начинает Петя. Цифру можно приписать в начало числа (кроме нуля), в его конец или между любыми двумя цифрами. Побеждает тот, после чьего хода число на доске станет точным квадратом. Может ли кто-нибудь гарантированно победить, как бы ни играл соперник?

Прислать комментарий     Решение

Задача 67052  (#5)

Темы:   [ Подобие ]
[ Параллелограммы (прочее) ]
[ Шестиугольники ]
[ Правильные многоугольники ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9,10,11

Автор: Кноп К.А.

Параллелограмм $ABCD$ разделён диагональю $BD$ на два равных треугольника. В треугольник $ABD$ вписан правильный шестиугольник так, что две его соседние стороны лежат на $AB$ и $AD$, а одна из вершин – на $BD$. В треугольник $CBD$ вписан правильный шестиугольник так, что две его соседние вершины лежат на $CB$ и $CD$, а одна из сторон – на $BD$. Какой из шестиугольников больше?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .