ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) На сторонах BC, CA и AB равнобедренного треугольника ABC с основанием AB взяты точки A1, B1 и C1 так, что прямые AA1, BB1 и CC1 пересекаются в одной точке. Докажите, что б) Внутри равнобедренного треугольника ABC с основанием AB взяты точки M и N так, что Середины M и N диагоналей AC и BD выпуклого
четырехугольника ABCD не совпадают. Прямая MN пересекает
стороны AB и CD в точках M1 и N1. Докажите, что
если MM1 = NN1, то AD| BC.
Положительные числа x, y, z таковы, что xyz = 1. Докажите, что Диагонали описанной трапеции ABCD с основаниями AD
и BC пересекаются в точке O. Радиусы вписанных окружностей
треугольников
AOD, AOB, BOC и COD равны
r1, r2, r3 и r4
соответственно. Докажите, что
На сторонах AB и BC равностороннего треугольника ABC отмечены точки D и K соответственно, а на стороне AC отмечены точки E и M так, что DA + AE = KC + CM = AB. Отрезки DM и KE пересекаются. Найдите угол между ними. В театральной труппе 60 актеров. Каждые два хотя бы раз играли в одном и том же спектакле. В каждом спектакле занято не более 30 актеров. Из вершин выпуклого четырехугольника опущены
перпендикуляры на диагонали. Докажите, что четырехугольник,
образованный основаниями перпендикуляров, подобен исходному
четырехугольнику.
Через точки пересечения продолжений сторон выпуклого
четырехугольника ABCD проведены две прямые, делящие его на четыре
четырехугольника. Докажите, что если четырехугольники, примыкающие к
вершинам B и D, описанные, то четырехугольник ABCD тоже описанный.
Даны две точки A и B и окружность. Найти на окружности точку X так, чтобы
прямые AX и BX отсекли на окружности хорду CD, параллельную данной прямой
MN.
Внутри параллелограмма ABCD расположена точка М. Сравните периметр параллелограмма и сумму расстояний от М до его вершин. Школьник хочет вырезать из квадрата размером 2n×2n наибольшее количество прямоугольников размером 1×(n + 1). Найти это количество для каждого натурального значения n. Постройте точки X и Y на сторонах AB и BC
треугольника ABC так, что AX = BY и XY| AC.
В треугольнике ABC проведены отрезки PQ и RS,
параллельные стороне AC, и отрезок BM (рис.). Трапеции RPKL
и MLSC описанные. Докажите, что трапеция APQC тоже описанная.
Есть 2018 гирек массами 1 г, 2 г, ..., 2018 г. Заяц положил на одну чашу весов две гирьки. Волк хотел двумя другими гирьками на другой чаше их уравновесить, но не смог. Какие гирьки мог взять Заяц? На сколько частей разделяют n-угольник его диагонали, если никакие три диагонали не пересекаются в одной точке? |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 58]
Найдите m и n зная, что
Какое слагаемое в разложении (1 +
Сколько четырёхзначных чисел можно составить, используя цифры 1, 2, 3, 4 и 5, если:
Сколько существует различных возможностей рассадить 5 юношей и 5 девушек за круглый стол с 10 креслами так, чтобы они чередовались?
На сколько частей разделяют n-угольник его диагонали, если никакие три диагонали не пересекаются в одной точке?
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 58]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке