ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На n карточках написаны с разных сторон числа — на 1-й: 0 и 1; на 2-й: 1 и 2; ...; на n-й: n - 1 и n. Один человек берёт из стопки несколько карточек и показывает второму одну сторону каждой из них. Затем берёт из стопки еще одну карточку и тоже показывает одну сторону. Указать все случаи, в которых второй может определить число, написанное на обороте последней показанной ему карточки.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 [Всего задач: 39]      



Задача 78168

Темы:   [ Теория игр (прочее) ]
[ Обратный ход ]
[ Перебор случаев ]
Сложность: 4+
Классы: 10,11

На n карточках написаны с разных сторон числа — на 1-й: 0 и 1; на 2-й: 1 и 2; ...; на n-й: n - 1 и n. Один человек берёт из стопки несколько карточек и показывает второму одну сторону каждой из них. Затем берёт из стопки еще одну карточку и тоже показывает одну сторону. Указать все случаи, в которых второй может определить число, написанное на обороте последней показанной ему карточки.
Прислать комментарий     Решение


Задача 78140

Темы:   [ Индукция в геометрии ]
[ Метод координат на плоскости ]
[ Геометрические неравенства (прочее) ]
[ Векторы помогают решить задачу ]
Сложность: 4+
Классы: 9,10,11

Бесконечная плоская ломаная A0A1...An..., все углы которой прямые, начинается в точке A0 с координатами x = 0, y = 1 и обходит начало координат O по часовой стрелке. Первое звено ломаной имеет длину 2 и параллельно биссектрисе 4-го координатного угла. Каждое из следующих звеньев пересекает одну из координатных осей и имеет наименьшую возможную при этом целочисленную длину. Расстояние OAn = ln. Сумма длин первых n звеньев ломаной равна sn. Доказать, что найдётся n, для которого $ {\frac{s_n}{l_n}}$ > 1958.
Прислать комментарий     Решение


Задача 78166

Темы:   [ Сочетания и размещения ]
[ Принцип крайнего ]
[ Подсчет двумя способами ]
[ Теория множеств (прочее) ]
Сложность: 5+
Классы: 10,11

В школе изучают 2n предметов. Все ученики учатся на 4 и 5. Никакие два ученика не учатся одинаково, ни про каких двух нельзя сказать, что один из них учится лучше другого. Доказать, что число учеников в школе не больше   .
(Мы считаем, что ученик p учится лучше ученика q, если у p оценки по всем предметам не ниже, чем у q, а по некоторым предметам – выше.)

Прислать комментарий     Решение

Задача 78145

Темы:   [ Неравенства с площадями ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 6+
Классы: 10,11

Проекции плоского выпуклого многоугольника на ось OX, биссектрису 1-го и 3-го координатных углов, ось OY и биссектрису 2-го и 4-го координатных углов соответственно равны 4, 3$ \sqrt{2}$, 5, 4$ \sqrt{2}$. Площадь многоугольника равна S. Доказать, что S$ \ge$10.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .