ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите наименьшее натуральное n, для которого существует такое m, что Дан угол и две точки внутри него. Постройте окружность, проходящую через эти точки и высекающую на сторонах угла равные отрезки. Дан треугольник с периметром, равным 24. Найдите периметр треугольника с вершинами в серединах сторон данного. Компьютеры 1, 2, 3, ..., 100 соединены в кольцо (первый со вторым, второй с третьим, ..., сотый с первым). Хакеры подготовили 100 вирусов, занумеровали их и в различное время в произвольном порядке запускают каждый вирус на компьютер, имеющий тот же номер. Если вирус попадает на незаражённый компьютер, то он заражает его и переходит на следующий в цепи компьютер с большим номером до тех пор, пока не попадёт на уже заражённый компьютер (с компьютера 100 вирус переходит на компьютер 1). Тогда вирус погибает, а этот компьютер восстанавливается. Ни на один компьютер два вируса одновременно не попадают. Сколько компьютеров будет заражено в результате атаки этих 100 вирусов? Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников? |
Страница: << 168 169 170 171 172 173 174 >> [Всего задач: 1957]
При каких натуральных a существуют такие натуральные числа x и y, что (x + y)2 + 3x + y = 2a?
Доказать, что любое чётное число 2n
Из точки O на плоскости проведено несколько векторов, сумма длин которых равна 4. Доказать, что можно выбрать несколько векторов (или, быть может, один вектор), длина суммы которых больше 1.
Дан треугольник ABC, в котором сторона AB больше BC. Проведены биссектрисы AK и CM (K лежит на BC, M лежит на AB). Доказать, что отрезок AM больше MK, а отрезок MK больше KC.
Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников?
Страница: << 168 169 170 171 172 173 174 >> [Всего задач: 1957]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке