Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

В таблицу 9×9 вписаны все целые числа от 1 до 81. Доказать, что найдутся два соседних числа, разность между которыми не меньше 6.

Вниз   Решение


Дана система из 25 различных отрезков с общим началом в данной точке A и с концами на прямой l, не проходящей через эту точку. Доказать, что не существует замкнутой 25-звенной ломаной, для каждого звена которой нашёлся бы отрезок системы, равный и параллельный этому звену.

ВверхВниз   Решение


Автор: Логачев Д.

Лист клетчатой бумаги размером N×N раскрасили в N цветов. (Каждую клеточку закрасили одним из этих N цветов или не закрасили вообще). "Правильной" раскраской называется такая, что в каждом столбце и в каждой строке нет двух клеточек одинакового цвета. Можно ли докрасить лист "правильным" способом, если сначала было "правильно" закрашено
а) N2 - 1 клетка?
б) N2 - 2 клетки?
в) N клеток?

ВверхВниз   Решение


Астрономический прожектор освещает октант (трёхгранный угол, у которого все плоские углы прямые). Прожектор помещён в центр куба. Можно ли его повернуть таким образом, чтобы он не освещал ни одной вершины куба?

ВверхВниз   Решение


Решить в натуральных числах уравнение  x2y–1 + (x + 1)2y–1 = (x + 2)2y–1.

ВверхВниз   Решение


Какое наибольшее число клеток может пересечь прямая, проведённая на листе клетчатой бумаги размером m×n клеток?

ВверхВниз   Решение


В правильном десятиугольнике провели все диагонали. Сколько попарно неподобных треугольников имеется на этом рисунке?

ВверхВниз   Решение


В клетках таблицы размером 10×20 расставлено 200 различных чисел. В каждой строчке отмечены три наибольших числа красным цветом, а в каждом столбце отмечены три наибольших числа синим цветом. Доказать, что не менее девяти чисел отмечены в таблице как красным, так и синим цветом.

ВверхВниз   Решение


Решить в целых положительных числах уравнение

ВверхВниз   Решение


На плоскости задано конечное множество точек. Доказать, что в нём найдётся точка, у которой имеется не более трёх ближайших к ней точек из этого же множества.

ВверхВниз   Решение


Доказать, что при нечётном n > 1 уравнение  xn + yn = zn  не может иметь решений в целых числах, для которых  x + y  – простое число.

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD точка M – середина диагонали AC, точка N – середина диагонали BD. Прямая MN пересекает стороны AB и CD в точках M' и N'. Доказать, что если  MM' = NN',  то  BC || AD.

ВверхВниз   Решение


Найдите минимум по всем α, β максимума функции

y(x) = |cos x + α cos 2x + β cos 3x|.

ВверхВниз   Решение


Доказать, что число всех цифр в последовательности 1, 2, 3,..., 108 равно числу всех нулей в последовательности 1, 2, 3,..., 109.

ВверхВниз   Решение


В треугольник вписана окружность, и точки касания её со сторонами треугольника соединены между собой. В полученный таким образом треугольник вписана новая окружность, точки касания которой со сторонами являются вершинами третьего треугольника, имеющего те же углы, что и первоначальный треугольник. Найти эти углы.

ВверхВниз   Решение


Дан многочлен P(x) степени n со старшим коэффициентом, равным 1. Известно, что если x – целое число, то P(x) – целое число, кратное p
(p – натуральное число). Доказать, что n! делится на p.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 79401

Темы:   [ Делимость чисел. Общие свойства ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4-
Классы: 11

Дан многочлен P(x) степени n со старшим коэффициентом, равным 1. Известно, что если x – целое число, то P(x) – целое число, кратное p
(p – натуральное число). Доказать, что n! делится на p.

Прислать комментарий     Решение

Задача 79403

Темы:   [ Ломаные внутри квадрата ]
[ Принцип Дирихле (углы и длины) ]
[ Ортогональная (прямоугольная) проекция ]
[ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 8,9,10

В квадрате со стороной длины 1 расположена ломаная без самопересечений, длина которой не меньше 200. Доказать, что найдётся прямая, параллельная одной из сторон квадрата, пересекающая ломаную не менее чем в 101-й точке.
Прислать комментарий     Решение


Задача 79404

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Формула Герона ]
[ Площадь треугольника (через высоту и основание) ]
[ Целочисленные треугольники ]
Сложность: 4
Классы: 9,10

Радиус вписанной в треугольник окружности равен $ {\frac{4}{3}}$, а длины высот треугольника — целые числа, сумма которых равна 13. Вычислить длины сторон треугольника.
Прислать комментарий     Решение


Задача 74220

Темы:   [ Теория множеств (прочее) ]
[ Двоичная система счисления ]
[ Геометрические интерпретации в алгебре ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 9,10,11

Автор: Федоров А.

Два подмножества множества натуральных чисел называют конгруэнтными, если одно получается из другого сдвигом на целое число. (Например, множества чётных и нечётных чисел конгруэнтны.) Можно ли разбить множество натуральных чисел на бесконечное число (не пересекающих друг друга) бесконечных конгруэнтных подмножеств?
Прислать комментарий     Решение


Задача 79402

Темы:   [ Предел последовательности, сходимость ]
[ Тригонометрические неравенства ]
Сложность: 4+
Классы: 10,11

Доказать, что последовательность xn = sin(n2) не стремится к нулю при n, стремящемся к бесконечности.
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .