ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Докажите, что число точек пересечения двух замкнутых ломаных на плоскости, находящихся в общем положении, чётно. Решить в целых числах уравнение xy/z + xz/y + yz/x = 3. Докажите, что для любого выпуклого многогранника имеет место соотношение
B - P + Г = 2,
где B — число его вершин,
P — число ребер, Г — число граней.
За круглым столом сидят n человек. Разрешается любых двух людей, сидящих рядом, поменять местами. Какое наименьшее число таких перестановок необходимо сделать, чтобы в результате каждые два соседа остались бы соседями, но сидели бы в обратном порядке? Докажите, что если a1 = a2 и b1 = b2 (см. рис.), то x = y. Труппа театра состоит из 20 артистов. Сколькими способами можно выбрать из неё в течение двух вечеров по шесть человек для участия в спектаклях так, чтобы ни один артист не участвовал в двух спектаклях? Сколько существует (невырожденных) треугольников периметра 100 с целыми длинами сторон? Три равные окружности касаются друг друга. Из произвольной точки окружности, касающейся внутренним образом этих окружностей, проведены касательные к ним. Доказать, что сумма длин двух касательных равна длине третьей. Сколько существует целых чисел от 0 до 999999, в десятичной записи которых нет двух стоящих рядом одинаковых цифр? Найти множество центров тяжести всех остроугольных треугольников, вписанных в данную окружность. Сколькими способами три человека могут разделить между собой шесть одинаковых яблок, один апельсин, одну сливу и один мандарин?
Проекции плоского выпуклого многоугольника на ось OX, биссектрису 1-го и
3-го координатных углов, ось OY и биссектрису 2-го и 4-го координатных
углов соответственно равны 4, 3 Докажите, что в каждом девятиугольнике есть пара диагоналей, угол между которыми меньше 7°. К некоторому натуральному числу справа последовательно приписали два двузначных числа. Полученное число оказалось равным кубу суммы трёх исходных чисел. Найдите все возможные тройки исходных чисел. |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]
На сторонах треугольника ABC вовне построены квадраты ABB1A2, BCC1B2 и CAA1C2. На отрезках A1A2 и B1B2 также во внешнюю сторону от треугольников AA1A2 и BB1B2 построены квадраты A1A2A3A4 и B1B2B3B4. Докажите, что A3B4 || AB.
К некоторому натуральному числу справа последовательно приписали два двузначных числа. Полученное число оказалось равным кубу суммы трёх исходных чисел. Найдите все возможные тройки исходных чисел.
На плоскости даны 2005 точек (никакие три из которых не лежат на одной прямой). Каждые две точки соединены отрезком. Тигр и Осёл играют в следующую игру. Осёл помечает каждый отрезок одной из цифр, а затем Тигр помечает каждую точку одной из цифр. Осёл выигрывает, если найдутся две точки, помеченные той же цифрой, что и соединяющий их отрезок, и проигрывает в противном случае. Доказать, что при правильной игре Осёл выиграет.
В пространстве даны 200 точек. Каждые две из них соединены отрезком, причём отрезки не пересекаются друг с другом. Первый игрок красит каждый отрезок в один из k цветов, затем второй игрок красит в один из тех же цветов каждую точку. Если найдутся две точки и отрезок между ними, окрашенные в один цвет, выигрывает первый игрок, в противном случае второй. Докажите, что первый может гарантировать себе выигрыш, если
Дан остроугольный треугольник ABC и точка P, не совпадающая с точкой пересечения его высот. Докажите, что окружности, проходящие через середины сторон треугольников PAB, PAC, PBC и ABC, а также окружность, проходящая через проекции точки P на стороны треугольника ABC, пересекаются в одной точке.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке