ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Во всех клетках квадрата 20×20 стоят солдатики. Ваня называет число d, а Петя переставляет солдатиков так, чтобы каждый передвинулся на расстояние не меньше d (расстояние берётся между центрами старой и новой клеток). При каких d это возможно?
б) Эта же задача для квадрата 21×21.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 97833

Темы:   [ Геометрия на клетчатой бумаге ]
[ Теорема Пифагора (прямая и обратная) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

а) Во всех клетках квадрата 20×20 стоят солдатики. Ваня называет число d, а Петя переставляет солдатиков так, чтобы каждый передвинулся на расстояние не меньше d (расстояние берётся между центрами старой и новой клеток). При каких d это возможно?
б) Эта же задача для квадрата 21×21.

Прислать комментарий     Решение

Задача 97834  (#2)

Темы:   [ Параллельность прямых и плоскостей ]
[ Апофема пирамиды (тетраэдра) ]
[ Сфера, описанная около тетраэдра ]
Сложность: 4-
Классы: 10,11

Из вершин основания тетраэдра в боковых гранях провели высоты, а затем в каждой из боковых граней основания двух лежащих в ней высот соединили прямой. Докажите, что эти три прямые параллельны одной плоскости.

Прислать комментарий     Решение

Задача 97836  (#3)

Темы:   [ Полуинварианты ]
[ Перестановки и подстановки ]
[ Процессы и операции ]
[ Принцип крайнего (прочее) ]
Сложность: 5
Классы: 9,10,11

Автор: Ильичев В.

По одной стороне бесконечного коридора расположено бесконечное количество комнат, занумерованных числами от минус бесконечности до плюс бесконечности. В комнатах живут 9 пианистов (в одной комнате могут жить несколько пианистов), кроме того, в каждой комнате находится по роялю. Каждый день какие-то два пианиста, живущие в соседних комнатах (k-й и (k+1)-й), приходят к выводу, что они мешают друг другу, и переселяются соответственно в (k–1)-ю и (k+2)-ю комнаты. Докажите, что через конечное число дней эти переселения прекратятся. (Пианисты, живущие в одной комнате, друг другу не мешают.)

Прислать комментарий     Решение

Задача 97832  (#4)

Темы:   [ Непрерывные функции (общие свойства) ]
[ Монотонность, ограниченность ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 10,11

Автор: Анджанс А.

F(x) – возрастающая функция, определённая на отрезке  [0, 1].  Известно, что область её значений принадлежит отрезку  [0, 1].  Доказать, что, каково бы ни было натуральное n, график функции можно покрыть N прямоугольниками, стороны которых параллельны осям координат так, что площадь каждого равна 1/n². (В прямоугольник мы включаем его внутренние точки и точки его границы.)

Прислать комментарий     Решение

Задача 97838  (#5)

Темы:   [ Раскладки и разбиения ]
[ Подсчет двумя способами ]
Сложность: 5
Классы: 9,10,11

  Для каждого натурального n обозначим через P(n) число разбиений n в сумму натуральных слагаемых (разбиения, отличающиеся лишь порядком слагаемых, считаются одинаковыми; например,  P(4) = 5,  потому что  4 = 4 = 1 + 3 = 2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1  – пять способов).
  а) Количество различных чисел в данном разбиении назовем его разбросом (например, разбиение  4 = 1 + 1 + 2  имеет разброс 2, потому что в этом разбиении два различных числа). Докажите, что сумма Q(n) разбросов всех разбиений числа n равна   1 + P(1) + P(2) + ... + P(n–1).
  б) Докажите, что  

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .