ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фомин С.В.

Доска 100×100 разбита на 10000 единичных квадратиков. Один из них вырезали, так что образовалась дырка. Можно ли оставшуюся часть доски покрыть равнобедренными прямоугольными треугольниками с гипотенузой длины 2 так, чтобы их гипотенузы шли по сторонам квадратиков, а катеты – по диагоналям и чтобы треугольники не налегали друг на друга и не свисали с доски?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



Задача 98085

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Тождественные преобразования ]
[ Разложение на множители ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 7,8,9

Автор: Фомин Д.

Докажите, что произведение 99 дробей     где  k = 2, 3, ..., 100,  больше ⅔.

Прислать комментарий     Решение

Задача 98091

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Укажите все такие натуральные n и целые неравные друг другу x и y, при которых верно равенство:   x + x² + x4 + ... + x2n = y + y² + y4 + ... + y2n.

 
Прислать комментарий     Решение

Задача 108048

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Каждая из трёх окружностей радиусов соответственно 1, r и r извне касается двух других.
При каких значениях r существует треугольник, описанный около этих окружностей?

Прислать комментарий     Решение

Задача 108051

Темы:   [ Вписанные и описанные многоугольники ]
[ Пятиугольники ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

В описанном пятиугольнике ABCDE диагонали AD и CE пересекаются в центре O вписанной окружности.
Докажите, что отрезок BO и сторона DE перпендикулярны.

Прислать комментарий     Решение

Задача 98064

Темы:   [ Шахматная раскраска ]
[ Замощения костями домино и плитками ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 6,7,8

Автор: Фомин С.В.

Доска 100×100 разбита на 10000 единичных квадратиков. Один из них вырезали, так что образовалась дырка. Можно ли оставшуюся часть доски покрыть равнобедренными прямоугольными треугольниками с гипотенузой длины 2 так, чтобы их гипотенузы шли по сторонам квадратиков, а катеты – по диагоналям и чтобы треугольники не налегали друг на друга и не свисали с доски?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .