ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Выпуклой фигурой F нельзя накрыть полукруг радиуса R. Может ли случиться, что двумя фигурами, равными F, можно накрыть круг радиуса R? Докажите, что среди всех треугольников ABC с фиксированным углом Доказать, что если натуральное число k делится на 10101010101, то в его десятичной записи по крайней мере шесть цифр отличны от нуля. Точки A', B', C' – основания высот остроугольного треугольника ABC. Окружность с центром B и радиусом BB' пересекает прямую A'C' в точках K и L (точки K и A лежат по одну сторону от BB'). Докажите, что точка пересечения прямых AK и CL лежит на прямой BO, где O – центр описанной окружности треугольника ABC. Дан треугольник ABC. Касательная в точке C к его описанной окружности пересекает прямую AB в точке D. Касательные к описанной окружности треугольника ACD в точках A и C пересекаются в точке K. Докажите, что прямая DK делит отрезок BC пополам.
Даны несколько перекрывающихся кругов, занимающие на плоскости площадь, равную
1. Доказать, что из них можно выбрать некоторое количество попарно
неперекрывающихся, чтобы их общая площадь была не менее
На плоскости расположено 20 точек, никакие три из которых не лежат на одной
прямой, из них 10 синих и 10 красных.
|
Страница: 1 2 >> [Всего задач: 6]
Дано:
На дуге AC описанной окружности правильного треугольника ABC взята точка M, отличная от C, P – середина этой дуги. Пусть N – середина хорды BM, K – основание перпендикуляра, опущенного из точки P на MC. Докажите, что треугольник ANK правильный.
Рассматривается конечное множество M единичных квадратов на плоскости. Их стороны параллельны осям координат (разрешается, чтобы квадраты пересекались). Известно, что для любой пары квадратов расстояние между их центрами не больше 2. Докажите, что существует единичный квадрат (не обязательно из множества M) со сторонами, параллельными осям, пересекающийся хотя бы по точке с каждым квадратом множества M.
На плоскости расположено 20 точек, никакие три из которых не лежат на одной
прямой, из них 10 синих и 10 красных.
На основании AB равнобедренного треугольника ABC выбрана точка D так, что окружность, вписанная в треугольник BCD, имеет тот же радиус, что и окружность, касающаяся продолжений отрезков CA и CD и отрезка AD (вневписанная окружность треугольника ACD). Докажите, что этот радиус равен одной четверти высоты треугольника ABC, опущенной на его боковую сторону.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке