Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 20 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

а) Даны две одинаковые шестерёнки с 14 зубьями каждая. Их наложили друг на друга так, что зубья совпали (так что проекция на плоскость выглядит как одна шестерёнка). После этого четыре пары совпадающих зубьев выпилили. Всегда ли можно повернуть эти шестерёнки друг относительно друга так, чтобы проекция на плоскость выглядела как одна целая шестерёнка? (Шестерёнки можно поворачивать, но нельзя переворачивать.)

б) Тот же вопрос про две шестерёнки с 13 зубьями, из которых выпилили по 4 зуба.

Вниз   Решение


Автор: Фомин С.В.

Даны 1000 линейных функций:  fk(x) = pkx + qk  (k = 1, 2, ..., 1000).  Нужно найти значение их композиции  f(x) = f1(f2(f3(...f1000(x)...)))  в точке x0. Докажите, что это можно сделать не более чем за 30 стадий, если на каждой стадии можно параллельно выполнять любое число арифметических операций над парами чисел, полученных на предыдущих стадиях, а на первой стадии используются числа  p1, p2, ..., p1000q1, q2, ..., q1000,  x0.

ВверхВниз   Решение


Автор: Фомин С.В.

В кооперативе из 11 человек имеется партячейка. На каждом собрании ячейки происходит либо приём одного члена в партию, либо исключение из партии одного человека. В партячейке не может быть меньше трёх человек. Возвращаться к какому-либо из прежних составов партячейки запрещено уставом. Может ли к какому-то моменту оказаться, что все варианты состава ячейки реализованы?

 

ВверхВниз   Решение


Периоды двух последовательностей – 7 и 13. Какова максимальная длина начального куска, который может у них совпадать?

ВверхВниз   Решение


Группа психологов разработала тест, пройдя который, каждый человек получает оценку – число Q – показатель его умственных способностей (чем больше Q, тем больше способности). За рейтинг страны принимается среднее арифметическое значений Q всех жителей этой страны.
  а) Группа граждан страны А эмигрировала в страну Б. Покажите, что при этом у обеих стран мог вырасти рейтинг.
  б) После этого группа граждан страны Б (в числе которых могут быть и бывшие эмигранты из А) эмигрировала в страну А. Возможно ли, что рейтинги обеих стран опять выросли?
  в) Группа граждан страны А эмигрировала в страну Б, а группа граждан Б – в страну В. В результате этого рейтинги каждой страны оказались выше первоначальных. После этого направление миграционных потоков изменилось на противоположное – часть жителей В переехала в Б, а часть жителей Б – в А. Оказалось, что в результате рейтинги всех трёх стран опять выросли (по сравнению с теми, которые были после первого переезда, но до начала второго). (Так, во всяком случае, утверждают информационные агентства этих стран.) Может ли такое быть (если да, то как, если нет, то почему)?

(Предполагается, что за рассматриваемое время Q граждан не изменилось, никто не умер и не родился.)

ВверхВниз   Решение


Сумма шестых степеней шести целых чисел на единицу больше, чем их ушестерённое произведение.
Докажите, что одно из чисел равно единице или минус единице, а остальные – нули.

ВверхВниз   Решение


n бумажных кругов радиуса 1 уложены на плоскость таким образом, что их границы проходят через одну точку, причём эта точка находится внутри области, покрытой кругами. Эта область представляет собой многоугольник с криволинейными сторонами. Найдите его периметр.

ВверхВниз   Решение


Докажите, что число вида a0...09 – не полный квадрат (при любом числе нулей, начиная с одного; a – цифра, отличная от 0).

 

ВверхВниз   Решение


Автор: Фольклор

Коэффициенты квадратного уравнения  x² + px + q = 0  изменили не больше чем на 0,001.
Может ли больший корень уравнения измениться больше, чем на 1000?

ВверхВниз   Решение


Автор: Фомин С.В.

Можно ли провести в каждом квадратике на поверхности кубика Рубика диагональ так, чтобы получился несамопересекающийся путь?

ВверхВниз   Решение


Докажите, что число 40...09 – не полный квадрат (при любом числе нулей, начиная с 1).

ВверхВниз   Решение


Автор: Фомин Д.

На плоскости дано N прямых  (N > 1),  никакие три из которых не пересекаются в одной точке и никакие две не параллельны. Докажите, что в частях, на которые эти прямые разбивают плоскость, можно расставить ненулевые целые числа, по модулю не превосходящие N, так, что суммы чисел по любую сторону от любой из данных прямых равны нулю.

ВверхВниз   Решение


В Простоквашинской начальной школе учится всего 20 детей. У каждых двух из них есть общий дед.
Докажите, что у одного из дедов в этой школе учится не менее 14 внуков и внучек.

ВверхВниз   Решение


Докажите, что для любых положительных чисел а1, ..., an справедливо неравенство

ВверхВниз   Решение


Докажите, что  a²pq + b²qr + c²rp ≤ 0,  если a, b, c – стороны треугольника; а p, q, r – любые числа, удовлетворяющие условию  p + q + r = 0.

ВверхВниз   Решение


Автор: Гусаров М.

Найти два шестизначных числа такие, что если их приписать друг к другу, то полученное двенадцатизначное число делится на произведение двух исходных чисел. Найти все такие пары чисел.

ВверхВниз   Решение


Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Разрешается проделывать следующее преобразование (перестройку): взяв пару треугольников ABD и BCD с общей стороной, заменить их на треугольники ABC и ACD. Пусть P(n) – наименьшее число перестроек, за которое можно перевести каждое разбиение в любое. Докажите, что
  а)  P(n) ≥ n – 3;
  б)  P(n) ≤ 2n – 7;
  в)  P(n) ≤ 2n – 10  при  n ≥ 13.

ВверхВниз   Решение


Может ли случиться, что шесть попарно непересекающихся параллелепипедов расположены в пространстве так, что из некоторой им не принадлежащей точки пространства не видно ни одной из их вершин? (Параллелепипеды непрозрачны.)

 

ВверхВниз   Решение


На стороне AB квадрата ABCD взята точка K, на стороне CD – точка L, на отрезке KL – точка M. Докажите, что вторая (отличная от M) точка пересечения окружностей, описанных около треугольников AKM и MLC, лежит на диагонали AC.

ВверхВниз   Решение


На координатной плоскости отмечены некоторые точки с целыми координатами. Известно, что никакие четыре из них не лежат на одной окружности. Докажите, что найдётся круг радиуса 1995, в котором не отмечено ни одной точки.

 

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]      



Задача 98236

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9

Сумма шестых степеней шести целых чисел на единицу больше, чем их ушестерённое произведение.
Докажите, что одно из чисел равно единице или минус единице, а остальные – нули.

Прислать комментарий     Решение

Задача 98245

Темы:   [ Неравенство Коши ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9,10

Докажите, что для любых положительных чисел а1, ..., an справедливо неравенство

Прислать комментарий     Решение

Задача 98246

Темы:   [ Периодичность и непериодичность ]
[ Деление с остатком ]
[ НОД и НОК. Взаимная простота ]
[ Алгоритм Евклида ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9,10

Периоды двух последовательностей – m и n – взаимно простые числа. Какова максимальная длина начального куска, который может у них совпадать?

Прислать комментарий     Решение

Задача 98264

Темы:   [ Уравнения в целых числах ]
[ Расстояние между двумя точками. Уравнение сферы ]
[ Рациональные и иррациональные числа ]
[ Сферы (прочее) ]
Сложность: 4-
Классы: 10,11

Автор: Рубин А.

Существует ли такая сфера, на которой имеется ровно одна рациональная точка? (Рациональная точка – точка, у которой все три декартовы координаты – рациональные числа.)

 
Прислать комментарий     Решение

Задача 98267

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9

На координатной плоскости отмечены некоторые точки с целыми координатами. Известно, что никакие четыре из них не лежат на одной окружности. Докажите, что найдётся круг радиуса 1995, в котором не отмечено ни одной точки.

 
Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .