Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]
а) Разбейте отрезок [0, 1] на чёрные и белые отрезки
так, чтобы для любого многочлена p(x) степени не выше второй сумма приращений p(x) по всем чёрным отрезкам равнялась сумме приращений p(x) по всем белым интервалам.
(Приращением многочлена p по отрезку (a, b) называется число p(b) – p(a).)
б) Удастся ли проделать аналогичную операцию для всех многочленов степени не выше 1995?
|
|
Сложность: 4 Классы: 10,11
|
Существует ли такой невыпуклый многогранник, что из некоторой точки М, лежащей вне него, не видна ни одна из его вершин?
(Многогранник сделан из непрозрачного материала, так что сквозь него ничего не видно.)
|
|
Сложность: 4 Классы: 8,9,10
|
Докажите, что среди 50 человек найдутся двое, у которых чётное число общих знакомых (быть может, 0) среди остальных 48 человек.
|
|
Сложность: 4 Классы: 8,9,10
|
Первоначально даны четыре одинаковых прямоугольных треугольника. Каждым ходом
один из имеющихся треугольников разрезается по высоте (выходящей из прямого угла) на два других. Докажите, что после любого количества ходов среди треугольников найдутся два одинаковых.
|
|
Сложность: 4 Классы: 9,10,11
|
Целые числа a, b и c таковы, что числа a/b + b/c + c/a и a/с + с/b + b/a тоже целые. Докажите, что |a| = |b| = |c|.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]