ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В пространстве имеются 30 ненулевых векторов. Доказать, что среди них найдутся два, угол между которыми меньше 45°.
На плоскости даны две точки A и B. Найдите
ГМТ M, для которых AM : BM = k (окружность Аполлония).
Пусть a^b обозначает число ab. В выражении 7^7^7^7^7^7^7 надо расставить скобки, чтобы определить порядок действий (всего будет 5 пар скобок). В ряд выписаны действительные числа a1, a2, a3, ..., a1996. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001. В ромбе ABCD ∠А = 120°. На сторонах BC и CD взяты точки M и N так, что ∠NAM = 30°. Квадрат разбит на n² равных квадратиков. Про некоторую ломаную известно, что она проходит через центры всех квадратиков (ломаная может пересекать сама себя). Каково минимальное число звеньев у этой ломаной? Вася и Петя играют в следующую игру. На доске написаны два числа: 1/2009 и 1/2008. На каждом ходу Вася называет любое число x, а Петя увеличивает одно из чисел на доске (какое захочет) на x. Вася выигрывает, если в какой-то момент одно из чисел на доске станет равным 1. Сможет ли Вася выиграть, как бы ни действовал Петя? Дан треугольник ABC. В нём R – радиус описанной окружности, r – радиус вписанной окружности, a – длина наибольшей стороны, h – длина наименьшей высоты. Докажите, что R/r > a/h. Натуральное число $k$ назовём интересным, если произведение первых $k$ простых чисел делится на $k$ (например, произведение первых двух простых чисел – это 2·3 = 6, и 2 – число интересное). На столе лежат 8 всевозможных горизонтальных полосок $1\times3$ из трёх квадратиков $1\times1$, каждый из которых либо белый, либо серый (см. рисунок). Разрешается переносить полоски в любых направлениях на любые (не обязательно целые) расстояния, не поворачивая и не переворачивая. Можно ли расположить полоски на столе так, чтобы все белые точки образовали многоугольник, ограниченный замкнутой несамопересекающейся ломаной, и все серые – тоже? (Полоски не должны перекрываться.) В однокруговом турнире участвовали 15 команд. Вася пишет на доске квадратное уравнение ax² + bx + c = 0 с натуральными коэффициентами a, b, c. После этого Петя, если хочет, может заменить один или два знака "+" на "–". Если у получившегося уравнения оба корня целые, то выигрывает Вася, если же корней нет или хотя бы один из них нецелый – Петя. Может ли Вася подобрать коэффициенты уравнения так, чтобы наверняка выиграть у Пети? Выпуклый N-угольник разбит диагоналями на треугольники (при этом диагонали не пересекаются внутри многоугольника). Треугольники раскрашены в чёрный и белый цвета так, что каждые два треугольника с общей стороной раскрашены в разные цвета. Для каждого N найдите максимум разности количества белых и количества чёрных треугольников. |
Страница: 1 2 >> [Всего задач: 7]
В банке работают 2002 сотрудника. Все сотрудники пришли на юбилей, и их рассадили за один круглый стол. Известно, что зарплаты сидящих рядом различаются на 2 или 3 доллара. Какой наибольшей может быть разница двух зарплат сотрудников этого банка, если известно, что все зарплаты сотрудников различны?
Все виды растений России были занумерованы подряд числами от 2 до 20000 (числа идут без пропусков и повторений). Для каждой пары видов растений запомнили наибольший общий делитель их номеров, а сами номера были забыты (в результате сбоя компьютера). Можно ли для каждого вида растений восстановить его номер?
Вершины 50-угольника делят окружность на 50 дуг, длины которых – 1, 2, 3, ..., 50 в некотором порядке. Известно, что каждая пара "противоположных" дуг (соответствующих противоположным сторонам 50-угольника) отличается по длине на 25. Докажите, что у 50-угольника найдутся две параллельные стороны.
Внутри треугольника ABC взята точка P так, что ∠ABP = ∠ACP, а ∠CBP = ∠CAP. Докажите, что P – точка пересечения высот треугольника ABC.
Выпуклый N-угольник разбит диагоналями на треугольники (при этом диагонали не пересекаются внутри многоугольника). Треугольники раскрашены в чёрный и белый цвета так, что каждые два треугольника с общей стороной раскрашены в разные цвета. Для каждого N найдите максимум разности количества белых и количества чёрных треугольников.
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке