Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых рёбер, а второй шар касается первого шара внешним образом и боковых граней пирамиды. Радиус первого шара равен R . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.

Вниз   Решение


Найдите углы четырёхугольника ABCD, вершины которого расположены на окружности, если  ∠ABD = 74°,  ∠DBC = 38°,  ∠BDC = 65°.

ВверхВниз   Решение


Докажите, что любое иррациональное число α допускает представление  α = [a0; a1, ..., an–1, αn],  где a0 – целое, a1, a2, ..., an–1 – натуральные,  αn > 1  – иррациональное действительное. Отсюда следует, что каждому иррациональному действительному числу можно поставить в соответствие бесконечную цепную дробь.

ВверхВниз   Решение


Вершина угла величиной 70° служит началом луча, образующего с его сторонами углы 30° и 40°. Из некоторой точки M на этот луч и на стороны угла опущены перпендикуляры, основания которых – A, B и C. Найдите углы треугольника ABC.

ВверхВниз   Решение


Сколько диагоналей имеет выпуклый:
а) 10-угольник;   б) k-угольник  (k > 3)?

ВверхВниз   Решение


На боковых сторонах AB и BC равнобедренного треугольника ABC с углом 44° при вершине взяты такие точки M и N, что  AM = BN = AC.  Точка X на луче CA такова, что  MX = AB  Найдите угол MXN.

ВверхВниз   Решение


Напишите в строчку первые 10 простых чисел. Как вычеркнуть 6 цифр, чтобы получилось наибольшее возможное число?

ВверхВниз   Решение


Даны точки A(2;4), B(6; - 4) и C(- 8; - 1). Докажите, что треугольник ABC прямоугольный.

ВверхВниз   Решение


Высота прямоугольного треугольника, опущенная на его гипотенузу, делит биссектрису острого угла в отношении  4 : 3,  считая от вершины.
Найдите величину этого угла.

ВверхВниз   Решение


В квадрате со стороной 100 расположено N кругов радиуса 1, причём всякий отрезок длины 10, целиком расположенный внутри квадрата, пересекает хотя бы один круг. Доказать, что N$ \ge$400.

Примечание Problems.Ru: Рассматриваются открытые круги, то есть круги без ограничивающей их окружности.

ВверхВниз   Решение


Том Сойер взялся покрасить очень длинный забор, соблюдая условие: любые две доски, между которыми ровно две, ровно три или ровно пять досок, должны быть окрашены в разные цвета. Какое наименьшее количество красок потребуется Тому для этой работы?

ВверхВниз   Решение


Найдите с точностью до 0,01 сотый член x100 последовательности {xn}, если
а) x1 $ \in$ [0; 1], xn + 1 = xn(1 - xn), (n > 1);
б) x1 $ \in$ [0, 1; 0, 9], xn + 1 = 2xn(1 - xn), (n > 1).

ВверхВниз   Решение


Докажите равенство:

arctg 1 + arctg $\displaystyle {\textstyle\dfrac{1}{2}}$ + arctg $\displaystyle {\textstyle\dfrac{1}{3}}$ = $\displaystyle {\dfrac{\pi}{2}}$.


ВверхВниз   Решение


Неотрицательные числа x, y, z удовлетворяют неравенствам  5 ≤ x, y, z ≤ 8.
Какое наибольшее и наименьшее значение может принимать величина  S = 2x²y² + 2x²z² + 2y²z² – x4y4z4 ?

ВверхВниз   Решение


В ботаническом справочнике каждое растение характеризуется 100 признаками (каждый признак либо присутствует, либо отсутствует). Растения считаются непохожими, если они различаются не менее, чем по 51 признаку.
  а) Покажите, что в справочнике не может находиться больше 50 попарно непохожих растений.
  б) А может ли быть ровно 50?

ВверхВниз   Решение


а) Электрическая схема имеет вид решетки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от каждого узла к любому другому. За какое наименьшее число измерений всегда можно в этом удостовериться?

б) Тот же вопрос для решётки 5×5 (всего 36 узлов).

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 98595  (#6)

Темы:   [ Делимость чисел. Общие свойства ]
[ Индукция (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Имеется много карточек, на каждой из которых записано натуральное число от 1 до n. Известно, что сумма чисел на всех карточках равна nk, где k – целое число. Докажите, что карточки можно разложить на k групп так, чтобы в каждой группе сумма чисел, записанных на карточках, равнялась n!.

Прислать комментарий     Решение

Задача 98596  (#7)

Темы:   [ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Внутренность и внешность. Лемма Жордана ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10

а) Электрическая схема имеет вид решетки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от каждого узла к любому другому. За какое наименьшее число измерений всегда можно в этом удостовериться?

б) Тот же вопрос для решётки 5×5 (всего 36 узлов).

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .