ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан массив. Требуется удалить из него элемент, стоящий на месте номер B,
сдвинув все последующие элементы влево.

Входные данные
Во входном файле записано сначала число N - количество элементов массива
(2<=N<=100), затем N чисел из диапазона Integer - элементы массива,
а затем число B (1<=B<=N).

Выходные данные
В выходной файл выведите N-1 число - элементы массива с удаленным B-м элементом.

Примечание
Вы должны удалить элемент непосредственно из массива, а не сделать
вид при выводе данных, что у вас такого элемента нет. Также вы не
должны для этого заводить в программе дополнительный массив.

То есть ввод данных осуществляется следующим фрагментом:
read(fi,n);
for i:=1 to n do read(fi,a[i]);
read(fi,b);

А вывод - следующим:
for i:=1 to n-1 do write(fo,a[i],' ');

Необходимые фрагменты вы можете найти в файле P128.PAS

Пример входного файла
5
1 3 5 6 7
2

Пример выходного файла
1 5 6 7

Текст программы P128.PAS

const nmax=100;

var a:array[1..nmax] of integer;
    n:integer;
    i:integer;
    b:integer;
    fi,fo:text;

begin
assign(fi,'input.txt');
reset(fi);
assign(fo,'output.txt');
rewrite(fo);

read(fi,n);
for i:=1 to n do read(fi,a[i]);
read(fi,b);

{Вы должны писать здесь}

for i:=1 to n-1 do write(fo,a[i],' ');
close(fi);
close(fo);
end.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 53]      



Задача 57944  (#18.026B-)

Тема:   [ Поворот (прочее) ]
Сложность: 2
Классы: 9

Докажите, что при повороте на угол $ \alpha$ с центром в начале координат точка с координатами (x, y) переходит в точку

(x cos$\displaystyle \alpha$ - y sin$\displaystyle \alpha$x sin$\displaystyle \alpha$ + y cos$\displaystyle \alpha$).


Прислать комментарий     Решение

Задача 57945  (#18.024)

Тема:   [ Поворот (прочее) ]
Сложность: 3
Классы: 9

Даны точки A и B и окружность S. Постройте на окружности S такие точки C и D, что AC| BD и дуга CD имеет данную величину $ \alpha$.
Прислать комментарий     Решение


Задача 57946  (#18.025)

Тема:   [ Поворот (прочее) ]
Сложность: 3
Классы: 9

Поворот с центром O переводит прямую l1 в прямую l2, а точку A1, лежащую на прямой l1, — в точку A2. Докажите, что точка пересечения прямых l1 и l2 лежит на описанной окружности треугольника A1OA2.
Прислать комментарий     Решение


Задача 57947  (#18.026)

Тема:   [ Поворот (прочее) ]
Сложность: 4
Классы: 9

На плоскости лежат две одинаковые буквы $ \Gamma$. Концы коротких палочек этих букв обозначим A и A'. Длинные палочки разбиты на n равных частей точками A1,..., An - 1; A1',..., An - 1' (точки деления нумеруются от концов длинных палочек). Прямые AAi и A'Ai' пересекаются в точке Xi. Докажите, что точки X1,..., Xn - 1 образуют выпуклый многоугольник.
Прислать комментарий     Решение


Задача 57948  (#18.027)

Тема:   [ Поворот (прочее) ]
Сложность: 4
Классы: 9

По двум прямым, пересекающимся в точке P, равномерно с одинаковой скоростью движутся две точки: по одной прямой — точка A, по другой — точка B. Через точку P они проходят не одновременно. Докажите, что в любой момент времени описанная окружность треугольника ABP проходит через некоторую фиксированную точку, отличную от P.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .