Страница:
<< 7 8 9 10 11 12
13 >> [Всего задач: 62]
Задача
73589
(#М54)
|
|
Сложность: 4+ Классы: 8,9
|
Два одинаковых прямоугольника расположены так, что их контуры пересекаются в восьми точках. Докажите, что площадь пересечения этих прямоугольников больше половины площади каждого из них.
Задача
73590
(#М55)
|
|
Сложность: 6+ Классы: 8,9,10,11
|
Все натуральные числа, в десятичной записи которых не больше
n цифр, разбили на два множества следующим образом. В первое множество входят числа с нечётной суммой цифр, а во
второе — c чётной суммой цифр. Докажите, что для любого натурального числа
k £ n сумма
k-х степеней всех чисел первого множества равна сумме
k-х степеней всех чисел второго множества.
Задача
30308
(#М56)
|
|
Сложность: 3+ Классы: 6,7
|
По кругу расставлено девять чисел – четыре единицы и пять нулей. Каждую секунду над числами проделывают следующую операцию: между соседними числами ставят ноль, если они различны, и единицу, если они равны; после этого старые числа стирают.
Могут ли через некоторое время все числа стать одинаковыми?
Задача
73592
(#М57)
|
|
Сложность: 4- Классы: 8,9,10
|
a) Найдите число
k, которое делится на 2 и на 9 и имеет всего 14 делителей (включая 1 и
k).
б) Докажите, что если заменить 14 на 15, то задача будет иметь несколько решений, а при замене 14 на 17 решений вообще не будет.
Задача
55590
(#М58)
|
|
Сложность: 4 Классы: 8,9
|
С помощью циркуля и линейки постройте треугольник, если дана
одна его вершина и три прямых, на которых лежат его биссектрисы.
Страница:
<< 7 8 9 10 11 12
13 >> [Всего задач: 62]