Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 1984]
Каждая грань куба заклеивается двумя равными прямоугольными треугольниками
с общей гипотенузой, один из которых белый, другой — чёрный. Можно ли эти
треугольники расположить так, чтобы при каждой вершине куба сумма белых углов
была равна сумме чёрных углов?
Доказать, что если целое n > 2, то (n!)² > nn.
Из бумаги вырезан многоугольник. Две точки его границы соединяются отрезком,
по которому многоугольник складывается. Доказать, что периметр многоугольника,
получающегося после складывания, меньше периметра исходного многоугольника.
Для любых чисел a1 и a2, удовлетворяющих условиям a1 ≥ 0, a2 ≥ 0, a1 + a2 = 1, можно найти такие числа b1 и b2, что b1 ≥ 0, b2 ≥ 0, b1 + b2 = 1,
(5/4 – a1)b1 + 3(5/4 – a2)b2 > 1. Доказать.
Дан треугольник ABC. Найти такую точку, что если её симметрично отразить от любой стороны треугольника, то она попадает на описанную окружность.
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 1984]