Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В три сосуда налито по целому числу литров воды. В любой сосуд разрешено перелить столько воды, сколько в нём уже содержится, из любого другого сосуда. Докажите, что несколькими такими переливаниями можно освободить один из сосудов. (Сосуды достаточно велики: каждый может вместить всю воду.)

Вниз   Решение


В параллелограмме $ABCD$ угол $A$ острый. На стороне $AB$ отмечена такая точка $N$, что  $CN = AB$.  Оказалось, что описанная окружность треугольника $CBN$ касается прямой $AD$. Докажите, что она касается её в точке $D$.

ВверхВниз   Решение


Автор: Фомин С.В.

Можно ли нарисовать на поверхности кубика Рубика такой замкнутый путь, который проходит через каждый квадратик ровно один раз (через вершины квадратиков путь не проходит)?

ВверхВниз   Решение


Диагонали параллелограмма ABCD пересекаются в точке O. Касательная, проведённая к описанной окружности треугольника BOC в точке O, пересекает луч CB в точке F. Описанная окружность треугольника FOD повторно пересекает прямую BC в точке G. Докажите, что  AG = AB.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 78041

Темы:   [ Трехгранные и многогранные углы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 11

Дан трехгранный угол с вершиной O. Можно ли найти такое плоское сечение ABC, чтобы углы OAB, OBA, OBC, OCB, OAC, OCA были острыми?
Прислать комментарий     Решение


Задача 78057

Тема:   [ Тетраэдр (прочее) ]
Сложность: 3+
Классы: 11

На плоскости P стоит прямой круговой конус. Радиус основания r, высота — h. На расстоянии H от плоскости и l от высоты конуса находится источник света. Какую часть окружности радиуса R, лежащей в плоскости P и концентрической с окружностью, лежащей в основании конуса, осветит этот источник?
Прислать комментарий     Решение


Задача 78040

Темы:   [ Аффинные преобразования и их свойства ]
[ Аналитический метод в геометрии ]
Сложность: 4-
Классы: 11

На плоскости даны две прямые, пересекающиеся под острым углом. В направлении одной из прямых производится сжатие с коэффициентом 1/2. Доказать, что найдется точка, расстояние от которой до точки пересечения прямых увеличится.
Прислать комментарий     Решение


Задача 78026

Темы:   [ Поворот помогает решить задачу ]
[ ГМТ и вписанный угол ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 8,9

Дан равносторонний $ \Delta$ABC. На сторонах AB и BC взяты точки D и E так, что AE = CD. Найти геометрическое место точек пересечения отрезков AE и CD.
Прислать комментарий     Решение


Задача 78035

Темы:   [ ГМТ с ненулевой площадью ]
[ Перенос помогает решить задачу ]
Сложность: 4
Классы: 8,9,10,11

Найти геометрическое место середин отрезков с концами на двух различных непересекающихся окружностях, лежащих одна вне другой.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .