ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 >> [Всего задач: 12]      



Задача 65227

Темы:   [ Трапеции (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4-
Классы: 8,9,10

В трапеции ABCD биссектрисы углов A и D пересекаются в точке E, лежащей на боковой стороне BC. Эти биссектрисы разбивают трапецию на три треугольника, в которые вписали окружности. Одна из этих окружностей касается основания AB в точке K, а две другие касаются биссектрисы DE в точках M и N. Докажите, что  BK = MN.

Прислать комментарий     Решение

Задача 65228

Темы:   [ Правильный (равносторонний) треугольник ]
[ Ромбы. Признаки и свойства ]
[ Симметрия помогает решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9,10

На стороне BE правильного треугольника ABE вне его построен ромб BCDE. Отрезки AC и BD пересекаются в точке F. Докажите, что  AF < BD.

Прислать комментарий     Решение

Задача 65232

Темы:   [ Трапеции (прочее) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перегруппировка площадей ]
Сложность: 4-
Классы: 10,11

O – точка пересечения диагоналей трапеции ABCD. Прямая, проходящая через C и точку, симметричную B относительно O, пересекает основание AD в точке K. Докажите, что  SAOK = SAOB + SDOK.

Прислать комментарий     Решение

Задача 65233

Темы:   [ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 10,11

В треугольнике ABC  M – середина стороны BC, P – точка пересечения касательных в точках B и C к описанной окружности, N – середина отрезка MP. Отрезок AN пересекает описанную окружность в точке Q. Докажите, что ∠PMQ = ∠MAQ.

Прислать комментарий     Решение

Задача 65229

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Вписанные четырехугольники (прочее) ]
[ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Автор: Якубов А.

В остроугольном неравнобедренном треугольнике ABC проведена высота AH. На сторонах AC и AB отмечены точки B1 и C1 соответственно, так, что HA – биссектриса угла B1HC1 и четырёхугольник BC1B1C – вписанный. Докажите, что B1 и C1 – основания высот треугольника ABC.

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .